Spaces:
Running
Running
File size: 18,209 Bytes
74cbf4e 8fb73ac 74cbf4e 8fb73ac abc40b1 514f8e2 abc40b1 ebcd189 abc40b1 ebcd189 abc40b1 ebcd189 abc40b1 8fb73ac abc40b1 8fb73ac abc40b1 8fb73ac 74cbf4e 8fb73ac 74cbf4e 8fb73ac 74cbf4e a07084d 93c7fa7 74cbf4e 4a361bb 8fb73ac 74cbf4e 8fb73ac 74cbf4e 8f47913 74cbf4e 8fb73ac 74cbf4e 8fb73ac e970e9d 8fb73ac 2a884d0 8fc1135 8fb73ac 74cbf4e 8fb73ac 74cbf4e 8fb73ac 74cbf4e 8fb73ac 2a884d0 8fb73ac 1ea4974 8fb73ac 74cbf4e 6820ae0 3ebdc9e 74cbf4e 8f47913 59fd7c2 9af8244 8f47913 59fd7c2 8f47913 74cbf4e 8f47913 74cbf4e c796f67 74cbf4e a07084d 0b02de1 74cbf4e 8fb73ac c796f67 74cbf4e 8f47913 74cbf4e ece64f9 74cbf4e ece64f9 59fd7c2 ece64f9 021fca8 ece64f9 0b02de1 ece64f9 8fb73ac 59fd7c2 74cbf4e ece64f9 021fca8 74cbf4e ece64f9 74cbf4e ece64f9 1ea4974 59fd7c2 1ea4974 021fca8 1ea4974 74cbf4e ece64f9 74cbf4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from scipy.stats import norm
def figo(plot_type, df, title, xlabel=None, ylabel=None, legend_title=None, colorscale='Plotly3'):
if plot_type == "Scatter":
fig = go.Figure()
for column in df.columns[0:]:
sorted_data = df#.sort_value(by="Total")
fig.add_trace(go.Scatter(
x=sorted_data.index,
y=sorted_data[column],
mode='lines+markers+text',
name=column,
text=sorted_data[column].round(0),
textposition="middle right"
))
fig.update_layout(
title=title,
xaxis_title="percentage",
yaxis_title="category",
yaxis={'categoryorder': 'array', 'categoryarray': sorted_data.index}
)
elif plot_type == "Heatmap":
df = df.apply(pd.to_numeric, errors='coerce')
fig = go.Figure(data=go.Heatmap(
z=df.values,
x=df.columns,
y=df.index,
hoverongaps=False,
colorscale=colorscale
))
fig.update_layout(
title={
'text': title,
'y':0.95,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis_title=xlabel,
yaxis_title=ylabel,
legend_title=legend_title,
template="plotly_white"
)
elif plot_type == "Bar":
fig = go.Figure()
col = df.name
fig.add_trace(go.Bar(
x=df.index,
y=df,
name=col
))
fig.update_layout(barmode='group')
fig.update_layout(
title={
'text': title,
'y':0.95,
'x':0.5,
'xanchor': 'center',
'yanchor': 'top'
},
xaxis_title=xlabel,
yaxis_title=ylabel,
legend_title=legend_title,
template="plotly_white"
)
else:
raise ValueError("Invalid plot_type. Supported types are 'Heatmap' and 'Bar'.")
return fig
def is_matching_pattern(column, prefix):
if not column.startswith(prefix + '_'):
return False
suffix = column[len(prefix) + 1:]
if 1 <= len(suffix) <= 3 and suffix.isdigit():
return True
return False
def multi_answer(df):
friquency = {}
for i in df.columns:
try:
unique_values = list(set(df[i].dropna()))[0]
friquency[str(unique_values)] = df[i].value_counts().get(unique_values, 0)
except Exception as e:
st.error(f"Warning: One of the data columns has no value.: {e}")
friquency[i] = 0
friquency_dataframe = pd.DataFrame({"Value": friquency.keys(), "Friquency": friquency.values(), "Percentage": np.array(list(friquency.values()))/len(df.dropna(how='all'))*100}).sort_values(by='Value')
friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna(how='all')), 1]
return friquency_dataframe
def single_answer(df):
counter = df.value_counts()
friquency_dataframe = pd.DataFrame({
'Value': counter.index,
'Frequency': counter.values,
'Percentage': (counter.values / counter.sum()) * 100}).sort_values(by='Value')
friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna()), 1]
return friquency_dataframe
def score_answer(df):
counter = df.value_counts().sort_index()
friquency_dataframe = pd.DataFrame({
'Value': list(counter.index)+["Meen", "Variance"],
'Frequency': list(counter.values)+[df.mean(), df.var()],
'Percentage': list((counter.values / counter.sum()) * 100)+["", ""]})
return friquency_dataframe
def two_variable_ss(df, var1, var2):
counter = df.groupby(var1)[var2].value_counts()
friquency_dataframe = counter.unstack(fill_value=0)
column_sums = friquency_dataframe.sum(axis=0)
percentage_dataframe = friquency_dataframe.div(column_sums, axis=1) * 100
friquency_dataframe['Total'] = list(single_answer(df[var1]).iloc[:,1])[:-1]
friquency_dataframe.loc['Sample_size'] = list(single_answer(df[var2]).iloc[:,1])
percentage_dataframe['Total'] = list(single_answer(df[var1]).iloc[:,2])[:-1]
percentage_dataframe.loc['Sample_size'] = list(single_answer(df[var2]).iloc[:,1])
return percentage_dataframe, friquency_dataframe
def two_variable_sm(df, var1, var2):
unique_values = list(set(df[var1].dropna()))
value = multi_answer(df[var2]).iloc[:-1,0]
friquency_dataframe, percentage_dataframe = {}, {}
for i in unique_values:
dataframe = multi_answer(df[df[var1] == i][var2]).iloc[:-1,:]
friquency_dataframe[i], percentage_dataframe[i] = dataframe['Friquency'], dataframe['Percentage']
friquency_dataframe = pd.DataFrame(friquency_dataframe)
percentage_dataframe = pd.DataFrame(percentage_dataframe)
friquency_dataframe.index, percentage_dataframe.index = value, value
friquency_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,1])[:-1]
friquency_dataframe.loc['Sample_size'] = list(single_answer(df[var1]).iloc[:,1])
percentage_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,2])[:-1]
percentage_dataframe.loc['Sample_size'] = list(single_answer(df[var1]).iloc[:,1])
return percentage_dataframe, friquency_dataframe
def two_variable_mm(df, var1, var2):
friquency_dataframe, percentage_dataframe = {}, {}
value = multi_answer(df[var2]).iloc[:-1,0]
for i in var1:
unique_values = list(set(df[i].dropna()))[0]
dataframe = multi_answer(df[df[i] == unique_values][var2]).iloc[:-1,:]
friquency_dataframe[i], percentage_dataframe[i] = dataframe['Friquency'], dataframe['Percentage']
friquency_dataframe = pd.DataFrame(friquency_dataframe)
percentage_dataframe = pd.DataFrame(percentage_dataframe)
friquency_dataframe.index, percentage_dataframe.index = value, value
friquency_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,1])[:-1]
friquency_dataframe.loc['Sample_size'] = list(multi_answer(df[var1]).iloc[:,1])
percentage_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,2])[:-1]
percentage_dataframe.loc['Sample_size'] = list(multi_answer(df[var1]).iloc[:,1])
return percentage_dataframe, friquency_dataframe
# Functions related to Z-Test
def read_excel_sheets(file):
"""Reads an Excel file with multiple sheets and returns a dictionary of DataFrames."""
try:
xls = pd.ExcelFile(file)
sheets_data = {sheet: xls.parse(sheet) for sheet in xls.sheet_names}
return sheets_data
except Exception as e:
st.error(f"❌ Error reading Excel file: {e}")
return None
def z_testes(n1, n2, p1, p2):
p_hat = ((n1*p1) + (n2*p2)) / (n1 + n2)
z = (p1 - p2) / ((p_hat * (1 - p_hat) * (1 / n1 + 1 / n2)) ** 0.5)
p_value = 2 * (1 - norm.cdf(abs(z)))
return p_value
def z_test_data(df):
styles = pd.DataFrame('', index=df.index, columns=df.columns)
num_rows, num_cols = df.shape
sample_size = df.iloc[-1, -1] # Total sample size
for i in range(num_rows -1):
for j in range(1, num_cols -1):
n1 = df.iloc[-1, -1]
n2 = df.iloc[-1, j]
p1 = df.iloc[i, -1]/100
p2 = df.iloc[i, j]/100
p_value = z_testes(n1, n2, p1, p2)
if pd.notnull(p_value) and p_value <= 0.05:
styles.iloc[i, j] = 'background-color: lightgreen'
return df.style.apply(lambda _: styles, axis=None)
def Z_test_dataframes(sheets_data):
"""Processes each sheet's DataFrame and computes new DataFrames with Z-test results."""
result_dataframes = {}
for sheet_name, df in sheets_data.items():
if df.empty:
st.warning(f"⚠️ Sheet '{sheet_name}' is empty and has been skipped.")
continue
df = df.set_index(df.columns[0]) # Use the first column as index
rows, cols = df.shape
if cols < 2:
st.warning(f"⚠️ Sheet '{sheet_name}' does not have enough columns for analysis and has been skipped.")
continue
new_df = pd.DataFrame(index=df.index[:-1], columns=df.columns[1:])
for i, row_name in enumerate(df.index[:-1]):
for j, col_name in enumerate(df.columns[1:]):
try:
n1 = df.iloc[-1, 0] # x_I1
n2 = df.iloc[-1, j+1] # x_Ij
p1 = df.iloc[i, 0] # x_1J
p2 = df.iloc[i, j+1] # x_ij
p_value = z_testes(n1, n2, p1, p2)
new_df.iloc[i, j] = p_value
except Exception as e:
st.error(f"❌ Error processing sheet '{sheet_name}', row '{row_name}', column '{col_name}': {e}")
new_df.iloc[i, j] = np.nan
result_dataframes[sheet_name] = new_df
return result_dataframes
def analyze_z_test(file):
"""
Performs Z-Test analysis on the uploaded Excel file.
Parameters:
- file: Uploaded Excel file
Returns:
- result_dataframes: Dictionary of DataFrames with p-values
"""
sheets_data = read_excel_sheets(file)
if sheets_data is None:
return None
result_dataframes = Z_test_dataframes(sheets_data)
if not result_dataframes:
st.error("❌ No valid sheets found for Z-Test analysis.")
return None
st.write("### 📈 Processed Tables with Z-Test Results")
for sheet_name, df in result_dataframes.items():
st.write(f"#### Sheet: {sheet_name}")
# Apply color coding based on p-value
def color_p_value(val):
try:
if pd.isna(val):
return 'background-color: lightgray'
elif val < 0.05:
return 'background-color: lightgreen'
else:
return 'background-color: lightcoral'
except:
return 'background-color: lightgray'
styled_df = df.style.applymap(color_p_value)
# Display the styled DataFrame
st.dataframe(styled_df, use_container_width=True)
return result_dataframes
# Streamlit User Interface
st.title("Data Analysis Application")
# Main options
main_option = st.selectbox("Please select an option:", ["Tabulation", "Hypothesis test", "Machine Learning", "Coding"])
if main_option == "Tabulation":
st.header("Tabulation Analysis")
uploaded_file = st.file_uploader("Please upload your Excel file", type=["xlsx", "xls"])
if uploaded_file:
try:
df = pd.read_excel(uploaded_file)
st.subheader("Displaying the first few rows of the DataFrame")
st.dataframe(df.head())
tabulation_option = st.selectbox("Please select the type of analysis:", ["All", "Univariate", "Multivariate"])
if tabulation_option == "All":
st.info("This section of the program is under development.")
elif tabulation_option == "Univariate":
uni_option = st.selectbox("Select the type of univariate analysis:", ["Multiple answer", "Single answer", "Score answer"])
if uni_option == "Single answer":
var = st.text_input("Please enter the name of the desired column:")
if var:
if var in df.columns:
result_df = single_answer(df[var])
st.subheader("Univariate Analysis Results")
st.dataframe(result_df)
fig = figo('Bar', result_df["Percentage"][:-1, ], title='Percentage Histogram', xlabel=var, ylabel='Percentage', colorscale='Plotly3')
st.plotly_chart(fig, use_container_width=True)
else:
st.error("The entered column was not found.")
elif uni_option == "Multiple answer":
var = st.text_input("Please enter the name of the desired column:")
if var:
matching_cols = [col for col in df.columns if is_matching_pattern(col, var)]
if matching_cols:
subset_df = df[matching_cols]
result_df = multi_answer(subset_df)
st.subheader("Multiple Answer Analysis Results")
st.dataframe(result_df)
fig = figo('Bar', result_df["Percentage"][:-1], title='Percentage Histogram', xlabel=var, ylabel='Percentage', colorscale='Plotly3')
st.plotly_chart(fig, use_container_width=True)
else:
st.error("No columns matching the entered pattern were found.")
elif uni_option == "Score answer":
var = st.text_input("Please enter the name of the desired column:")
if var:
subset_df = df[var]
result_df = score_answer(subset_df)
st.subheader("Score Answer Analysis Results")
st.dataframe(result_df)
fig = figo('Bar', result_df["Percentage"][:-1], title='Percentage Histogram', xlabel=var, ylabel='Percentage', colorscale='Plotly3')
st.plotly_chart(fig, use_container_width=True)
else:
st.error("No columns matching the entered pattern were found.")
elif tabulation_option == "Multivariate":
st.subheader("Multivariate Analysis")
var1 = st.text_input("Please enter the name of the first column:")
var2 = st.text_input("Please enter the name of the second column:")
if var1 and var2:
type1 = st.selectbox("Select the type of analysis for the first column:", ["Multiple answer", "Single answer"], key='type1')
type2 = st.selectbox("Select the type of analysis for the second column:", ["Multiple answer", "Single answer"], key='type2')
if type1 == "Single answer" and type2 == "Single answer":
percentile_df, frequency_df = two_variable_ss(df[[var1, var2]], var1, var2)
st.subheader("Percentage Table")
st.write(z_test_data(percentile_df))
st.subheader("Frequency Table")
st.dataframe(frequency_df)
fig = figo('Scatter', percentile_df.iloc[:-1,:], title='Percentage Scatter plot')
st.plotly_chart(fig, use_container_width=True)
elif type1 == "Single answer" and type2 == "Multiple answer":
matching_cols = [col for col in df.columns if is_matching_pattern(col, var2)]
if matching_cols:
percentile_df, frequency_df = two_variable_sm(df[[var1] + matching_cols], var1, matching_cols)
st.subheader("Percentage Table")
st.write(z_test_data(percentile_df))
st.subheader("Frequency Table")
st.dataframe(frequency_df)
fig = figo('Scatter', percentile_df.iloc[:-1,:], title='Percentage Scatter plot')
st.plotly_chart(fig, use_container_width=True)
else:
st.error("No columns matching the entered pattern were found.")
elif type1 == "Multiple answer" and type2 == "Multiple answer":
matching_cols1 = [col for col in df.columns if is_matching_pattern(col, var1)]
matching_cols2 = [col for col in df.columns if is_matching_pattern(col, var2)]
if matching_cols1 and matching_cols2:
percentile_df, frequency_df = two_variable_mm(df[matching_cols1 + matching_cols2], matching_cols1, matching_cols2)
st.subheader("Percentage Table")
st.write(z_test_data(percentile_df))
st.subheader("Frequency Table")
st.dataframe(frequency_df)
fig = figo('Scatter', percentile_df.iloc[:-1,:], title='Percentage Scatter plot')
st.plotly_chart(fig, use_container_width=True)
else:
st.error("No columns matching the entered pattern were found.")
else:
st.info("This section of the program is under development.")
except Exception as e:
st.error(f"❌ Error reading the Excel file: {e}")
elif main_option == "Hypothesis test":
st.header("Hypothesis Testing")
hypothesis_option = st.selectbox("Please select the type of hypothesis test:", ["Z test", "T test", "Chi-Square test", "ANOVA test"])
if hypothesis_option != "Z test":
st.info("This section of the program is under development.")
else:
uploaded_file = st.file_uploader("Please upload your Excel file for Z-Test", type=["xlsx", "xls"])
if uploaded_file:
result = analyze_z_test(uploaded_file)
if result:
st.success("Z-Test analysis completed successfully.")
elif main_option in ["Machine Learning", "Coding"]:
st.info("This section of the program is under development.")
|