File size: 18,209 Bytes
74cbf4e
 
 
 
8fb73ac
74cbf4e
 
8fb73ac
 
abc40b1
 
 
 
514f8e2
abc40b1
ebcd189
 
abc40b1
 
ebcd189
abc40b1
 
 
 
 
 
 
ebcd189
abc40b1
 
 
8fb73ac
 
 
 
 
 
 
 
 
 
abc40b1
 
 
 
 
 
 
 
 
 
 
 
 
 
8fb73ac
 
 
 
 
 
 
 
 
 
abc40b1
 
 
 
 
 
 
 
 
 
 
 
 
 
8fb73ac
 
 
 
 
 
 
74cbf4e
 
 
 
 
 
 
 
8fb73ac
74cbf4e
8fb73ac
74cbf4e
a07084d
 
 
 
 
93c7fa7
 
74cbf4e
4a361bb
8fb73ac
 
 
74cbf4e
 
 
8fb73ac
 
 
 
 
 
74cbf4e
8f47913
 
 
 
 
 
 
 
 
 
74cbf4e
8fb73ac
74cbf4e
8fb73ac
 
 
e970e9d
8fb73ac
2a884d0
 
 
 
8fc1135
8fb73ac
 
 
 
 
 
74cbf4e
8fb73ac
 
 
74cbf4e
8fb73ac
 
74cbf4e
8fb73ac
 
2a884d0
 
 
 
 
8fb73ac
1ea4974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fb73ac
74cbf4e
 
 
 
 
 
 
 
 
 
 
 
 
6820ae0
 
3ebdc9e
 
74cbf4e
8f47913
59fd7c2
 
 
 
 
 
 
 
 
9af8244
 
8f47913
59fd7c2
 
 
 
8f47913
74cbf4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f47913
74cbf4e
 
 
 
 
 
 
 
 
c796f67
74cbf4e
 
 
 
 
 
 
 
 
a07084d
0b02de1
74cbf4e
 
8fb73ac
c796f67
74cbf4e
 
 
8f47913
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74cbf4e
 
 
 
 
 
ece64f9
 
74cbf4e
ece64f9
 
 
59fd7c2
ece64f9
 
 
 
021fca8
ece64f9
 
 
0b02de1
ece64f9
 
8fb73ac
59fd7c2
74cbf4e
 
 
ece64f9
021fca8
74cbf4e
ece64f9
74cbf4e
ece64f9
1ea4974
 
 
 
 
 
 
59fd7c2
1ea4974
 
 
 
021fca8
1ea4974
 
 
 
 
74cbf4e
ece64f9
 
74cbf4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from scipy.stats import norm

def figo(plot_type, df, title, xlabel=None, ylabel=None, legend_title=None, colorscale='Plotly3'):

    if plot_type == "Scatter":
        fig = go.Figure()

        for column in df.columns[0:]:
            sorted_data = df#.sort_value(by="Total")
            fig.add_trace(go.Scatter(
                x=sorted_data.index,
                y=sorted_data[column],
                mode='lines+markers+text',
                name=column,
                text=sorted_data[column].round(0),
                textposition="middle right"
            ))
        
        fig.update_layout(
            title=title,
            xaxis_title="percentage",
            yaxis_title="category",
            yaxis={'categoryorder': 'array', 'categoryarray': sorted_data.index}
        )
    
    elif plot_type == "Heatmap":
        df = df.apply(pd.to_numeric, errors='coerce')

        fig = go.Figure(data=go.Heatmap(
            z=df.values,
            x=df.columns,
            y=df.index,
            hoverongaps=False,
            colorscale=colorscale
        ))

        fig.update_layout(
            title={
                'text': title,
                'y':0.95,
                'x':0.5,
                'xanchor': 'center',
                'yanchor': 'top'
            },
            xaxis_title=xlabel,
            yaxis_title=ylabel,
            legend_title=legend_title,
            template="plotly_white"
        )

    elif plot_type == "Bar":
        fig = go.Figure()
        col = df.name
        fig.add_trace(go.Bar(
            x=df.index,
            y=df,
            name=col
        ))
        
        fig.update_layout(barmode='group')
        
        fig.update_layout(
            title={
                'text': title,
                'y':0.95,
                'x':0.5,
                'xanchor': 'center',
                'yanchor': 'top'
            },
            xaxis_title=xlabel,
            yaxis_title=ylabel,
            legend_title=legend_title,
            template="plotly_white"
        )

    else:
        raise ValueError("Invalid plot_type. Supported types are 'Heatmap' and 'Bar'.")


    return fig

def is_matching_pattern(column, prefix):
    if not column.startswith(prefix + '_'):
        return False
    suffix = column[len(prefix) + 1:]
    if 1 <= len(suffix) <= 3 and suffix.isdigit():
        return True
    return False


def multi_answer(df):
    friquency = {}
    for i in df.columns:
        try:
            unique_values = list(set(df[i].dropna()))[0]
            friquency[str(unique_values)] = df[i].value_counts().get(unique_values, 0)
        except Exception as e:
            st.error(f"Warning: One of the data columns has no value.: {e}")
            friquency[i] = 0
            

    friquency_dataframe = pd.DataFrame({"Value": friquency.keys(), "Friquency": friquency.values(), "Percentage": np.array(list(friquency.values()))/len(df.dropna(how='all'))*100}).sort_values(by='Value')
    friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna(how='all')), 1]
    return friquency_dataframe
    

def single_answer(df):
    counter = df.value_counts()
    friquency_dataframe = pd.DataFrame({
        'Value': counter.index, 
        'Frequency': counter.values, 
        'Percentage': (counter.values / counter.sum()) * 100}).sort_values(by='Value')
    friquency_dataframe.loc[len(friquency_dataframe)] = ['Sample_size', len(df.dropna()), 1]
    return friquency_dataframe

def score_answer(df):
    counter = df.value_counts().sort_index()

    friquency_dataframe = pd.DataFrame({
        'Value': list(counter.index)+["Meen", "Variance"],
        'Frequency': list(counter.values)+[df.mean(), df.var()], 
        'Percentage': list((counter.values / counter.sum()) * 100)+["", ""]})
    
    return friquency_dataframe

def two_variable_ss(df, var1, var2):

    counter = df.groupby(var1)[var2].value_counts()
    friquency_dataframe = counter.unstack(fill_value=0)

    column_sums = friquency_dataframe.sum(axis=0)
    percentage_dataframe = friquency_dataframe.div(column_sums, axis=1) * 100

    friquency_dataframe['Total'] = list(single_answer(df[var1]).iloc[:,1])[:-1]
    friquency_dataframe.loc['Sample_size'] = list(single_answer(df[var2]).iloc[:,1])
    percentage_dataframe['Total'] = list(single_answer(df[var1]).iloc[:,2])[:-1]
    percentage_dataframe.loc['Sample_size'] = list(single_answer(df[var2]).iloc[:,1])
    
    return percentage_dataframe, friquency_dataframe

def two_variable_sm(df, var1, var2):
    unique_values = list(set(df[var1].dropna()))
    value = multi_answer(df[var2]).iloc[:-1,0]
    friquency_dataframe, percentage_dataframe = {}, {}

    for i in unique_values:
        dataframe = multi_answer(df[df[var1] == i][var2]).iloc[:-1,:]
        friquency_dataframe[i], percentage_dataframe[i] = dataframe['Friquency'], dataframe['Percentage']

    friquency_dataframe = pd.DataFrame(friquency_dataframe)
    percentage_dataframe = pd.DataFrame(percentage_dataframe)

    friquency_dataframe.index, percentage_dataframe.index = value, value

    friquency_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,1])[:-1]
    friquency_dataframe.loc['Sample_size'] = list(single_answer(df[var1]).iloc[:,1])
    percentage_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,2])[:-1]
    percentage_dataframe.loc['Sample_size'] = list(single_answer(df[var1]).iloc[:,1])
    

    return percentage_dataframe, friquency_dataframe

def two_variable_mm(df, var1, var2):
    friquency_dataframe, percentage_dataframe = {}, {}
    value = multi_answer(df[var2]).iloc[:-1,0]

    for i in var1:
        unique_values = list(set(df[i].dropna()))[0]
        dataframe = multi_answer(df[df[i] == unique_values][var2]).iloc[:-1,:]
        friquency_dataframe[i], percentage_dataframe[i] = dataframe['Friquency'], dataframe['Percentage']

    friquency_dataframe = pd.DataFrame(friquency_dataframe)
    percentage_dataframe = pd.DataFrame(percentage_dataframe)

    friquency_dataframe.index, percentage_dataframe.index = value, value

    friquency_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,1])[:-1]
    friquency_dataframe.loc['Sample_size'] = list(multi_answer(df[var1]).iloc[:,1])
    percentage_dataframe['Total'] = list(multi_answer(df[var2]).iloc[:,2])[:-1]
    percentage_dataframe.loc['Sample_size'] = list(multi_answer(df[var1]).iloc[:,1])

    return percentage_dataframe, friquency_dataframe

# Functions related to Z-Test
def read_excel_sheets(file):
    """Reads an Excel file with multiple sheets and returns a dictionary of DataFrames."""
    try:
        xls = pd.ExcelFile(file)
        sheets_data = {sheet: xls.parse(sheet) for sheet in xls.sheet_names}
        return sheets_data
    except Exception as e:
        st.error(f"❌ Error reading Excel file: {e}")
        return None

def z_testes(n1, n2, p1, p2):
    p_hat = ((n1*p1) + (n2*p2)) / (n1 + n2)
    z = (p1 - p2) / ((p_hat * (1 - p_hat) * (1 / n1 + 1 / n2)) ** 0.5)
    p_value = 2 * (1 - norm.cdf(abs(z)))
    return p_value

def z_test_data(df):
    styles = pd.DataFrame('', index=df.index, columns=df.columns)
    
    num_rows, num_cols = df.shape
    sample_size = df.iloc[-1, -1]  # Total sample size
    
    for i in range(num_rows -1):
        for j in range(1, num_cols -1):
            n1 = df.iloc[-1, -1]
            n2 = df.iloc[-1, j]
            p1 = df.iloc[i, -1]/100
            p2 = df.iloc[i, j]/100
            p_value = z_testes(n1, n2, p1, p2)
            if pd.notnull(p_value) and p_value <= 0.05:
                styles.iloc[i, j] = 'background-color: lightgreen'
    
    return df.style.apply(lambda _: styles, axis=None)

def Z_test_dataframes(sheets_data):
    """Processes each sheet's DataFrame and computes new DataFrames with Z-test results."""
    result_dataframes = {}
    for sheet_name, df in sheets_data.items():
        if df.empty:
            st.warning(f"⚠️ Sheet '{sheet_name}' is empty and has been skipped.")
            continue
        df = df.set_index(df.columns[0])  # Use the first column as index
        rows, cols = df.shape
        if cols < 2:
            st.warning(f"⚠️ Sheet '{sheet_name}' does not have enough columns for analysis and has been skipped.")
            continue
        new_df = pd.DataFrame(index=df.index[:-1], columns=df.columns[1:])
        for i, row_name in enumerate(df.index[:-1]):
            for j, col_name in enumerate(df.columns[1:]):
                try:
                    n1 = df.iloc[-1, 0]  # x_I1
                    n2 = df.iloc[-1, j+1]  # x_Ij
                    p1 = df.iloc[i, 0]  # x_1J
                    p2 = df.iloc[i, j+1]  # x_ij
                    p_value = z_testes(n1, n2, p1, p2)
                    new_df.iloc[i, j] = p_value
                except Exception as e:
                    st.error(f"❌ Error processing sheet '{sheet_name}', row '{row_name}', column '{col_name}': {e}")
                    new_df.iloc[i, j] = np.nan

        result_dataframes[sheet_name] = new_df

    return result_dataframes

def analyze_z_test(file):
    """
    Performs Z-Test analysis on the uploaded Excel file.

    Parameters:
    - file: Uploaded Excel file

    Returns:
    - result_dataframes: Dictionary of DataFrames with p-values
    """
    sheets_data = read_excel_sheets(file)
    if sheets_data is None:
        return None

    result_dataframes = Z_test_dataframes(sheets_data)

    if not result_dataframes:
        st.error("❌ No valid sheets found for Z-Test analysis.")
        return None

    st.write("### 📈 Processed Tables with Z-Test Results")
    for sheet_name, df in result_dataframes.items():
        st.write(f"#### Sheet: {sheet_name}")
        
        # Apply color coding based on p-value
        def color_p_value(val):
            try:
                if pd.isna(val):
                    return 'background-color: lightgray'
                elif val < 0.05:
                    return 'background-color: lightgreen'
                else:
                    return 'background-color: lightcoral'
            except:
                return 'background-color: lightgray'
        
        styled_df = df.style.applymap(color_p_value)
        
        # Display the styled DataFrame
        st.dataframe(styled_df, use_container_width=True)
    
    return result_dataframes

# Streamlit User Interface
st.title("Data Analysis Application")

# Main options
main_option = st.selectbox("Please select an option:", ["Tabulation", "Hypothesis test", "Machine Learning", "Coding"])

if main_option == "Tabulation":
    st.header("Tabulation Analysis")
    uploaded_file = st.file_uploader("Please upload your Excel file", type=["xlsx", "xls"])
    if uploaded_file:
        try:
            df = pd.read_excel(uploaded_file)
            st.subheader("Displaying the first few rows of the DataFrame")
            st.dataframe(df.head())

            tabulation_option = st.selectbox("Please select the type of analysis:", ["All", "Univariate", "Multivariate"])

            if tabulation_option == "All":
                st.info("This section of the program is under development.")
            elif tabulation_option == "Univariate":
                uni_option = st.selectbox("Select the type of univariate analysis:", ["Multiple answer", "Single answer", "Score answer"])

                if uni_option == "Single answer":
                    var = st.text_input("Please enter the name of the desired column:")
                    if var:
                        if var in df.columns:
                            result_df = single_answer(df[var])
                            st.subheader("Univariate Analysis Results")
                            st.dataframe(result_df)

                            fig = figo('Bar', result_df["Percentage"][:-1, ], title='Percentage Histogram', xlabel=var, ylabel='Percentage', colorscale='Plotly3')
                            st.plotly_chart(fig, use_container_width=True)
                        else:
                            st.error("The entered column was not found.")
                elif uni_option == "Multiple answer":
                    var = st.text_input("Please enter the name of the desired column:")
                    if var:
                        matching_cols = [col for col in df.columns if is_matching_pattern(col, var)]
                        if matching_cols:
                            subset_df = df[matching_cols]
                            result_df = multi_answer(subset_df)
                                
                            st.subheader("Multiple Answer Analysis Results")
                            st.dataframe(result_df)
                            
                            fig = figo('Bar', result_df["Percentage"][:-1], title='Percentage Histogram', xlabel=var, ylabel='Percentage', colorscale='Plotly3')
                            st.plotly_chart(fig, use_container_width=True)
                        else:
                            st.error("No columns matching the entered pattern were found.")

                elif uni_option == "Score answer":
                    var = st.text_input("Please enter the name of the desired column:")
                    if var:
                        subset_df = df[var]
                        result_df = score_answer(subset_df)

                        st.subheader("Score Answer Analysis Results")
                        st.dataframe(result_df)
                        
                        fig = figo('Bar', result_df["Percentage"][:-1], title='Percentage Histogram', xlabel=var, ylabel='Percentage', colorscale='Plotly3')
                        st.plotly_chart(fig, use_container_width=True)
                    else:
                        st.error("No columns matching the entered pattern were found.")
                        
            elif tabulation_option == "Multivariate":
                st.subheader("Multivariate Analysis")
                var1 = st.text_input("Please enter the name of the first column:")
                var2 = st.text_input("Please enter the name of the second column:")

                if var1 and var2:
                    type1 = st.selectbox("Select the type of analysis for the first column:", ["Multiple answer", "Single answer"], key='type1')
                    type2 = st.selectbox("Select the type of analysis for the second column:", ["Multiple answer", "Single answer"], key='type2')

                    if type1 == "Single answer" and type2 == "Single answer":
                        percentile_df, frequency_df = two_variable_ss(df[[var1, var2]], var1, var2)
                        st.subheader("Percentage Table")
                        st.write(z_test_data(percentile_df))

                        st.subheader("Frequency Table")
                        st.dataframe(frequency_df)

                        fig = figo('Scatter', percentile_df.iloc[:-1,:], title='Percentage Scatter plot')
                        st.plotly_chart(fig, use_container_width=True)

                    elif type1 == "Single answer" and type2 == "Multiple answer":
                        matching_cols = [col for col in df.columns if is_matching_pattern(col, var2)]
                        if matching_cols:
                            percentile_df, frequency_df = two_variable_sm(df[[var1] + matching_cols], var1, matching_cols)
                            st.subheader("Percentage Table")
                            st.write(z_test_data(percentile_df))

                            st.subheader("Frequency Table")
                            st.dataframe(frequency_df)
                            
                            fig = figo('Scatter', percentile_df.iloc[:-1,:], title='Percentage Scatter plot')
                            st.plotly_chart(fig, use_container_width=True)
                            
                        else:
                            st.error("No columns matching the entered pattern were found.")

                    elif type1 == "Multiple answer" and type2 == "Multiple answer":
                        matching_cols1 = [col for col in df.columns if is_matching_pattern(col, var1)]
                        matching_cols2 = [col for col in df.columns if is_matching_pattern(col, var2)]
                        if matching_cols1 and matching_cols2:
                            percentile_df, frequency_df = two_variable_mm(df[matching_cols1 + matching_cols2], matching_cols1, matching_cols2)
                            st.subheader("Percentage Table")
                            st.write(z_test_data(percentile_df))

                            st.subheader("Frequency Table")
                            st.dataframe(frequency_df)
                            
                            fig = figo('Scatter', percentile_df.iloc[:-1,:], title='Percentage Scatter plot')
                            st.plotly_chart(fig, use_container_width=True)
                            
                        else:
                            st.error("No columns matching the entered pattern were found.")
                    
                    else:
                        st.info("This section of the program is under development.")

        except Exception as e:
            st.error(f"❌ Error reading the Excel file: {e}")

elif main_option == "Hypothesis test":
    st.header("Hypothesis Testing")
    hypothesis_option = st.selectbox("Please select the type of hypothesis test:", ["Z test", "T test", "Chi-Square test", "ANOVA test"])

    if hypothesis_option != "Z test":
        st.info("This section of the program is under development.")
    else:
        uploaded_file = st.file_uploader("Please upload your Excel file for Z-Test", type=["xlsx", "xls"])
        if uploaded_file:
            result = analyze_z_test(uploaded_file)
            if result:
                st.success("Z-Test analysis completed successfully.")

elif main_option in ["Machine Learning", "Coding"]:
    st.info("This section of the program is under development.")