Spaces:
Running
Running
Delete train_log/warplayer.py
Browse files- train_log/warplayer.py +0 -22
train_log/warplayer.py
DELETED
@@ -1,22 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
|
4 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
5 |
-
backwarp_tenGrid = {}
|
6 |
-
|
7 |
-
|
8 |
-
def warp(tenInput, tenFlow):
|
9 |
-
k = (str(tenFlow.device), str(tenFlow.size()))
|
10 |
-
if k not in backwarp_tenGrid:
|
11 |
-
tenHorizontal = torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device).view(
|
12 |
-
1, 1, 1, tenFlow.shape[3]).expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1)
|
13 |
-
tenVertical = torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device).view(
|
14 |
-
1, 1, tenFlow.shape[2], 1).expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3])
|
15 |
-
backwarp_tenGrid[k] = torch.cat(
|
16 |
-
[tenHorizontal, tenVertical], 1).to(device)
|
17 |
-
|
18 |
-
tenFlow = torch.cat([tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0),
|
19 |
-
tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0)], 1)
|
20 |
-
|
21 |
-
g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1)
|
22 |
-
return torch.nn.functional.grid_sample(input=tenInput, grid=g, mode='bilinear', padding_mode='border', align_corners=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|