AItool commited on
Commit
0d93a7f
·
verified ·
1 Parent(s): 1f62862

Delete train_log/loss.py

Browse files
Files changed (1) hide show
  1. train_log/loss.py +0 -128
train_log/loss.py DELETED
@@ -1,128 +0,0 @@
1
- import torch
2
- import numpy as np
3
- import torch.nn as nn
4
- import torch.nn.functional as F
5
- import torchvision.models as models
6
-
7
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8
-
9
-
10
- class EPE(nn.Module):
11
- def __init__(self):
12
- super(EPE, self).__init__()
13
-
14
- def forward(self, flow, gt, loss_mask):
15
- loss_map = (flow - gt.detach()) ** 2
16
- loss_map = (loss_map.sum(1, True) + 1e-6) ** 0.5
17
- return (loss_map * loss_mask)
18
-
19
-
20
- class Ternary(nn.Module):
21
- def __init__(self):
22
- super(Ternary, self).__init__()
23
- patch_size = 7
24
- out_channels = patch_size * patch_size
25
- self.w = np.eye(out_channels).reshape(
26
- (patch_size, patch_size, 1, out_channels))
27
- self.w = np.transpose(self.w, (3, 2, 0, 1))
28
- self.w = torch.tensor(self.w).float().to(device)
29
-
30
- def transform(self, img):
31
- patches = F.conv2d(img, self.w, padding=3, bias=None)
32
- transf = patches - img
33
- transf_norm = transf / torch.sqrt(0.81 + transf**2)
34
- return transf_norm
35
-
36
- def rgb2gray(self, rgb):
37
- r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :]
38
- gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
39
- return gray
40
-
41
- def hamming(self, t1, t2):
42
- dist = (t1 - t2) ** 2
43
- dist_norm = torch.mean(dist / (0.1 + dist), 1, True)
44
- return dist_norm
45
-
46
- def valid_mask(self, t, padding):
47
- n, _, h, w = t.size()
48
- inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t)
49
- mask = F.pad(inner, [padding] * 4)
50
- return mask
51
-
52
- def forward(self, img0, img1):
53
- img0 = self.transform(self.rgb2gray(img0))
54
- img1 = self.transform(self.rgb2gray(img1))
55
- return self.hamming(img0, img1) * self.valid_mask(img0, 1)
56
-
57
-
58
- class SOBEL(nn.Module):
59
- def __init__(self):
60
- super(SOBEL, self).__init__()
61
- self.kernelX = torch.tensor([
62
- [1, 0, -1],
63
- [2, 0, -2],
64
- [1, 0, -1],
65
- ]).float()
66
- self.kernelY = self.kernelX.clone().T
67
- self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device)
68
- self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device)
69
-
70
- def forward(self, pred, gt):
71
- N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3]
72
- img_stack = torch.cat(
73
- [pred.reshape(N*C, 1, H, W), gt.reshape(N*C, 1, H, W)], 0)
74
- sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1)
75
- sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1)
76
- pred_X, gt_X = sobel_stack_x[:N*C], sobel_stack_x[N*C:]
77
- pred_Y, gt_Y = sobel_stack_y[:N*C], sobel_stack_y[N*C:]
78
-
79
- L1X, L1Y = torch.abs(pred_X-gt_X), torch.abs(pred_Y-gt_Y)
80
- loss = (L1X+L1Y)
81
- return loss
82
-
83
- class MeanShift(nn.Conv2d):
84
- def __init__(self, data_mean, data_std, data_range=1, norm=True):
85
- c = len(data_mean)
86
- super(MeanShift, self).__init__(c, c, kernel_size=1)
87
- std = torch.Tensor(data_std)
88
- self.weight.data = torch.eye(c).view(c, c, 1, 1)
89
- if norm:
90
- self.weight.data.div_(std.view(c, 1, 1, 1))
91
- self.bias.data = -1 * data_range * torch.Tensor(data_mean)
92
- self.bias.data.div_(std)
93
- else:
94
- self.weight.data.mul_(std.view(c, 1, 1, 1))
95
- self.bias.data = data_range * torch.Tensor(data_mean)
96
- self.requires_grad = False
97
-
98
- class VGGPerceptualLoss(torch.nn.Module):
99
- def __init__(self, rank=0):
100
- super(VGGPerceptualLoss, self).__init__()
101
- blocks = []
102
- pretrained = True
103
- self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features
104
- self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda()
105
- for param in self.parameters():
106
- param.requires_grad = False
107
-
108
- def forward(self, X, Y, indices=None):
109
- X = self.normalize(X)
110
- Y = self.normalize(Y)
111
- indices = [2, 7, 12, 21, 30]
112
- weights = [1.0/2.6, 1.0/4.8, 1.0/3.7, 1.0/5.6, 10/1.5]
113
- k = 0
114
- loss = 0
115
- for i in range(indices[-1]):
116
- X = self.vgg_pretrained_features[i](X)
117
- Y = self.vgg_pretrained_features[i](Y)
118
- if (i+1) in indices:
119
- loss += weights[k] * (X - Y.detach()).abs().mean() * 0.1
120
- k += 1
121
- return loss
122
-
123
- if __name__ == '__main__':
124
- img0 = torch.zeros(3, 3, 256, 256).float().to(device)
125
- img1 = torch.tensor(np.random.normal(
126
- 0, 1, (3, 3, 256, 256))).float().to(device)
127
- ternary_loss = Ternary()
128
- print(ternary_loss(img0, img1).shape)