Spaces:
Running
Running
Delete train_log/loss.py
Browse files- train_log/loss.py +0 -128
train_log/loss.py
DELETED
@@ -1,128 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
import torchvision.models as models
|
6 |
-
|
7 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
-
|
9 |
-
|
10 |
-
class EPE(nn.Module):
|
11 |
-
def __init__(self):
|
12 |
-
super(EPE, self).__init__()
|
13 |
-
|
14 |
-
def forward(self, flow, gt, loss_mask):
|
15 |
-
loss_map = (flow - gt.detach()) ** 2
|
16 |
-
loss_map = (loss_map.sum(1, True) + 1e-6) ** 0.5
|
17 |
-
return (loss_map * loss_mask)
|
18 |
-
|
19 |
-
|
20 |
-
class Ternary(nn.Module):
|
21 |
-
def __init__(self):
|
22 |
-
super(Ternary, self).__init__()
|
23 |
-
patch_size = 7
|
24 |
-
out_channels = patch_size * patch_size
|
25 |
-
self.w = np.eye(out_channels).reshape(
|
26 |
-
(patch_size, patch_size, 1, out_channels))
|
27 |
-
self.w = np.transpose(self.w, (3, 2, 0, 1))
|
28 |
-
self.w = torch.tensor(self.w).float().to(device)
|
29 |
-
|
30 |
-
def transform(self, img):
|
31 |
-
patches = F.conv2d(img, self.w, padding=3, bias=None)
|
32 |
-
transf = patches - img
|
33 |
-
transf_norm = transf / torch.sqrt(0.81 + transf**2)
|
34 |
-
return transf_norm
|
35 |
-
|
36 |
-
def rgb2gray(self, rgb):
|
37 |
-
r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :]
|
38 |
-
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
|
39 |
-
return gray
|
40 |
-
|
41 |
-
def hamming(self, t1, t2):
|
42 |
-
dist = (t1 - t2) ** 2
|
43 |
-
dist_norm = torch.mean(dist / (0.1 + dist), 1, True)
|
44 |
-
return dist_norm
|
45 |
-
|
46 |
-
def valid_mask(self, t, padding):
|
47 |
-
n, _, h, w = t.size()
|
48 |
-
inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t)
|
49 |
-
mask = F.pad(inner, [padding] * 4)
|
50 |
-
return mask
|
51 |
-
|
52 |
-
def forward(self, img0, img1):
|
53 |
-
img0 = self.transform(self.rgb2gray(img0))
|
54 |
-
img1 = self.transform(self.rgb2gray(img1))
|
55 |
-
return self.hamming(img0, img1) * self.valid_mask(img0, 1)
|
56 |
-
|
57 |
-
|
58 |
-
class SOBEL(nn.Module):
|
59 |
-
def __init__(self):
|
60 |
-
super(SOBEL, self).__init__()
|
61 |
-
self.kernelX = torch.tensor([
|
62 |
-
[1, 0, -1],
|
63 |
-
[2, 0, -2],
|
64 |
-
[1, 0, -1],
|
65 |
-
]).float()
|
66 |
-
self.kernelY = self.kernelX.clone().T
|
67 |
-
self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device)
|
68 |
-
self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device)
|
69 |
-
|
70 |
-
def forward(self, pred, gt):
|
71 |
-
N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3]
|
72 |
-
img_stack = torch.cat(
|
73 |
-
[pred.reshape(N*C, 1, H, W), gt.reshape(N*C, 1, H, W)], 0)
|
74 |
-
sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1)
|
75 |
-
sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1)
|
76 |
-
pred_X, gt_X = sobel_stack_x[:N*C], sobel_stack_x[N*C:]
|
77 |
-
pred_Y, gt_Y = sobel_stack_y[:N*C], sobel_stack_y[N*C:]
|
78 |
-
|
79 |
-
L1X, L1Y = torch.abs(pred_X-gt_X), torch.abs(pred_Y-gt_Y)
|
80 |
-
loss = (L1X+L1Y)
|
81 |
-
return loss
|
82 |
-
|
83 |
-
class MeanShift(nn.Conv2d):
|
84 |
-
def __init__(self, data_mean, data_std, data_range=1, norm=True):
|
85 |
-
c = len(data_mean)
|
86 |
-
super(MeanShift, self).__init__(c, c, kernel_size=1)
|
87 |
-
std = torch.Tensor(data_std)
|
88 |
-
self.weight.data = torch.eye(c).view(c, c, 1, 1)
|
89 |
-
if norm:
|
90 |
-
self.weight.data.div_(std.view(c, 1, 1, 1))
|
91 |
-
self.bias.data = -1 * data_range * torch.Tensor(data_mean)
|
92 |
-
self.bias.data.div_(std)
|
93 |
-
else:
|
94 |
-
self.weight.data.mul_(std.view(c, 1, 1, 1))
|
95 |
-
self.bias.data = data_range * torch.Tensor(data_mean)
|
96 |
-
self.requires_grad = False
|
97 |
-
|
98 |
-
class VGGPerceptualLoss(torch.nn.Module):
|
99 |
-
def __init__(self, rank=0):
|
100 |
-
super(VGGPerceptualLoss, self).__init__()
|
101 |
-
blocks = []
|
102 |
-
pretrained = True
|
103 |
-
self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features
|
104 |
-
self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda()
|
105 |
-
for param in self.parameters():
|
106 |
-
param.requires_grad = False
|
107 |
-
|
108 |
-
def forward(self, X, Y, indices=None):
|
109 |
-
X = self.normalize(X)
|
110 |
-
Y = self.normalize(Y)
|
111 |
-
indices = [2, 7, 12, 21, 30]
|
112 |
-
weights = [1.0/2.6, 1.0/4.8, 1.0/3.7, 1.0/5.6, 10/1.5]
|
113 |
-
k = 0
|
114 |
-
loss = 0
|
115 |
-
for i in range(indices[-1]):
|
116 |
-
X = self.vgg_pretrained_features[i](X)
|
117 |
-
Y = self.vgg_pretrained_features[i](Y)
|
118 |
-
if (i+1) in indices:
|
119 |
-
loss += weights[k] * (X - Y.detach()).abs().mean() * 0.1
|
120 |
-
k += 1
|
121 |
-
return loss
|
122 |
-
|
123 |
-
if __name__ == '__main__':
|
124 |
-
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
|
125 |
-
img1 = torch.tensor(np.random.normal(
|
126 |
-
0, 1, (3, 3, 256, 256))).float().to(device)
|
127 |
-
ternary_loss = Ternary()
|
128 |
-
print(ternary_loss(img0, img1).shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|