Spaces:
Running
Running
File size: 6,373 Bytes
073d3e8 4a45930 073d3e8 1966494 073d3e8 1966494 073d3e8 1966494 073d3e8 1966494 073d3e8 1966494 073d3e8 1966494 073d3e8 1966494 073d3e8 1966494 073d3e8 1966494 073d3e8 4a45930 073d3e8 1966494 073d3e8 1966494 073d3e8 1966494 073d3e8 1966494 073d3e8 1966494 073d3e8 4a45930 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import gradio as gr
from gradio_client import Client
import json
import logging
import ast
import openai
import os
import re
from sklearn.feature_extraction.text import TfidfVectorizer
from multiprocessing import Pool, cpu_count
logging.basicConfig(filename='youtube_script_extractor.log', level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s')
openai.api_key = os.getenv("OPENAI_API_KEY")
def parse_api_response(response):
try:
if isinstance(response, str):
response = ast.literal_eval(response)
if isinstance(response, list) and len(response) > 0:
response = response[0]
if not isinstance(response, dict):
raise ValueError(f"μμμΉ λͺ»ν μλ΅ νμμ
λλ€. λ°μ λ°μ΄ν° νμ
: {type(response)}")
return response
except Exception as e:
raise ValueError(f"API μλ΅ νμ± μ€ν¨: {str(e)}")
def get_youtube_script(url):
logging.info(f"μ€ν¬λ¦½νΈ μΆμΆ μμ: URL = {url}")
client = Client("whispersound/YT_Ts_R")
try:
logging.debug("API νΈμΆ μμ")
result = client.predict(youtube_url=url, api_name="/predict")
logging.debug("API νΈμΆ μλ£")
parsed_result = parse_api_response(result)
title = parsed_result["data"][0]["title"]
transcription_text = parsed_result["data"][0]["transcriptionAsText"]
original_sections = parsed_result["data"][0]["sections"]
merged_sections = merge_sections(original_sections)
processed_sections = process_merged_sections_parallel(merged_sections)
logging.info("μ€ν¬λ¦½νΈ μΆμΆ λ° μ²λ¦¬ μλ£")
return title, transcription_text, processed_sections
except Exception as e:
error_msg = f"μ€ν¬λ¦½νΈ μΆμΆ μ€ μ€λ₯ λ°μ: {str(e)}"
logging.exception(error_msg)
return "", "", []
def is_same_topic_tfidf(text1, text2, threshold=0.3):
vectorizer = TfidfVectorizer().fit([text1, text2])
vectors = vectorizer.transform([text1, text2])
similarity = (vectors[0] * vectors[1].T).A[0][0]
return similarity > threshold
def merge_sections(sections, min_duration=60, max_duration=300):
merged_sections = []
current_section = sections[0].copy()
for section in sections[1:]:
duration = current_section['end_time'] - current_section['start_time']
if duration < min_duration:
current_section['end_time'] = section['end_time']
current_section['text'] += ' ' + section['text']
elif duration >= max_duration:
merged_sections.append(current_section)
current_section = section.copy()
else:
if is_same_topic_tfidf(current_section['text'], section['text']):
current_section['end_time'] = section['end_time']
current_section['text'] += ' ' + section['text']
else:
merged_sections.append(current_section)
current_section = section.copy()
merged_sections.append(current_section)
return merged_sections
def summarize_section(section_text):
prompt = f"""
λ€μ μ νλΈ λλ³Έ μΉμ
μ ν΅μ¬ λ΄μ©μ κ°κ²°νκ² μμ½νμΈμ:
1. νκΈλ‘ μμ±νμΈμ.
2. μ£Όμ λ
Όμ κ³Ό μ€μν μΈλΆμ¬νμ ν¬ν¨νμΈμ.
3. μμ½μ 2-3λ¬Έμ₯μΌλ‘ μ ννμΈμ.
μΉμ
λ΄μ©:
{section_text}
"""
try:
response = openai.ChatCompletion.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": prompt}],
max_tokens=150,
temperature=0.3,
top_p=0.9
)
return response['choices'][0]['message']['content']
except Exception as e:
logging.exception("μμ½ μμ± μ€ μ€λ₯ λ°μ")
return "μμ½μ μμ±νλ λμ μ€λ₯κ° λ°μνμ΅λλ€."
def process_section(section):
summary = summarize_section(section['text'])
return {
'start_time': section['start_time'],
'end_time': section['end_time'],
'summary': summary
}
def process_merged_sections_parallel(merged_sections):
with Pool(processes=cpu_count()) as pool:
return pool.map(process_section, merged_sections)
def format_time(seconds):
minutes, seconds = divmod(seconds, 60)
hours, minutes = divmod(minutes, 60)
return f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d}"
def generate_timeline_summary(processed_sections):
timeline_summary = ""
for i, section in enumerate(processed_sections, 1):
start_time = format_time(section['start_time'])
end_time = format_time(section['end_time'])
timeline_summary += f"{start_time} - {end_time} {i}. {section['summary']}\n\n"
return timeline_summary
def display_script_and_summary(title, script, processed_sections):
timeline_summary = generate_timeline_summary(processed_sections)
script_html = f"""<h2 style='font-size:24px;'>{title}</h2>
<h3>νμλΌμΈ μμ½:</h3>
<div style="white-space: pre-wrap; max-height: 400px; overflow-y: auto; border: 1px solid #ccc; padding: 10px;">
{timeline_summary}
</div>
<details>
<summary><h3>μλ¬Έ μ€ν¬λ¦½νΈ (ν΄λ¦νμ¬ νΌμΉκΈ°)</h3></summary>
<div style="white-space: pre-wrap;">{script}</div>
</details>"""
return script_html
with gr.Blocks() as demo:
gr.Markdown("## YouTube μ€ν¬λ¦½νΈ μΆμΆ λ° μμ½ λꡬ")
youtube_url_input = gr.Textbox(label="YouTube URL μ
λ ₯")
analyze_button = gr.Button("λΆμνκΈ°")
output = gr.HTML(label="κ²°κ³Ό")
cached_data = gr.State({"url": "", "title": "", "script": "", "processed_sections": []})
def analyze(url, cache):
if url == cache["url"]:
return display_script_and_summary(cache["title"], cache["script"], cache["processed_sections"]), cache
title, script, processed_sections = get_youtube_script(url)
new_cache = {"url": url, "title": title, "script": script, "processed_sections": processed_sections}
return display_script_and_summary(title, script, processed_sections), new_cache
analyze_button.click(
analyze,
inputs=[youtube_url_input, cached_data],
outputs=[output, cached_data]
)
demo.launch(share=True) |