AIRider commited on
Commit
1966494
ยท
verified ยท
1 Parent(s): 4a45930

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +103 -97
app.py CHANGED
@@ -5,13 +5,15 @@ import logging
5
  import ast
6
  import openai
7
  import os
8
- import random
9
  import re
 
 
10
 
11
- # ๋กœ๊น… ์„ค์ •
12
  logging.basicConfig(filename='youtube_script_extractor.log', level=logging.DEBUG,
13
  format='%(asctime)s - %(levelname)s - %(message)s')
14
 
 
 
15
  def parse_api_response(response):
16
  try:
17
  if isinstance(response, str):
@@ -24,32 +26,8 @@ def parse_api_response(response):
24
  except Exception as e:
25
  raise ValueError(f"API ์‘๋‹ต ํŒŒ์‹ฑ ์‹คํŒจ: {str(e)}")
26
 
27
- # ๋ฌธ์žฅ ๊ตฌ๋ถ„ ํ•จ์ˆ˜ (ํ•œ๊ตญ์–ด)
28
- def split_sentences(text):
29
- sentences = re.split(r"(๋‹ˆ๋‹ค|์—์š”|๊ตฌ๋‚˜|ํ•ด์š”|๊ตฐ์š”|๊ฒ ์–ด์š”|์‹œ์˜ค|ํ•ด๋ผ|์˜ˆ์š”|์•„์š”|๋ฐ์š”|๋Œ€์š”|์„ธ์š”|์–ด์š”|๊ฒŒ์š”|๊ตฌ์š”|๊ณ ์š”|๋‚˜์š”|ํ•˜์ฃ )(?![\w])", text)
30
- combined_sentences = []
31
- current_sentence = ""
32
- for i in range(0, len(sentences), 2):
33
- if i + 1 < len(sentences):
34
- sentence = sentences[i] + sentences[i + 1]
35
- else:
36
- sentence = sentences[i]
37
- if len(current_sentence) + len(sentence) > 100: # 100์ž๋ฅผ ์ดˆ๊ณผํ•  ๊ฒฝ์šฐ
38
- combined_sentences.append(current_sentence.strip())
39
- current_sentence = sentence.strip()
40
- else:
41
- current_sentence += sentence
42
- if sentence.endswith(('.', '?', '!')):
43
- combined_sentences.append(current_sentence.strip())
44
- current_sentence = ""
45
- if current_sentence:
46
- combined_sentences.append(current_sentence.strip())
47
- return combined_sentences
48
-
49
  def get_youtube_script(url):
50
  logging.info(f"์Šคํฌ๋ฆฝํŠธ ์ถ”์ถœ ์‹œ์ž‘: URL = {url}")
51
-
52
- # ์—”๋“œํฌ์ธํŠธ๋ฅผ ์ƒˆ๋กœ์šด ๊ฒƒ์œผ๋กœ ๋ณ€๊ฒฝ
53
  client = Client("whispersound/YT_Ts_R")
54
 
55
  try:
@@ -57,108 +35,136 @@ def get_youtube_script(url):
57
  result = client.predict(youtube_url=url, api_name="/predict")
58
  logging.debug("API ํ˜ธ์ถœ ์™„๋ฃŒ")
59
 
60
- # ์‘๋‹ต ํŒŒ์‹ฑ
61
  parsed_result = parse_api_response(result)
62
 
63
  title = parsed_result["data"][0]["title"]
64
  transcription_text = parsed_result["data"][0]["transcriptionAsText"]
65
-
66
- logging.info("์Šคํฌ๋ฆฝํŠธ ์ถ”์ถœ ์™„๋ฃŒ")
67
- return title, transcription_text
 
 
 
 
68
 
69
  except Exception as e:
70
  error_msg = f"์Šคํฌ๋ฆฝํŠธ ์ถ”์ถœ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}"
71
  logging.exception(error_msg)
72
- return "", ""
73
 
74
- # OpenAI API ํ‚ค ์„ค์ •
75
- openai.api_key = os.getenv("OPENAI_API_KEY")
 
 
 
76
 
77
- # LLM API ํ˜ธ์ถœ ํ•จ์ˆ˜
78
- def call_api(prompt, max_tokens, temperature, top_p):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  try:
80
  response = openai.ChatCompletion.create(
81
- model="gpt-4o-mini", # ๋ชจ๋ธ์„ gpt-4o-mini๋กœ ๋ณ€๊ฒฝ
82
  messages=[{"role": "user", "content": prompt}],
83
- max_tokens=max_tokens,
84
- temperature=temperature,
85
- top_p=top_p
86
  )
87
  return response['choices'][0]['message']['content']
88
- except Exception as e:
89
- logging.exception("LLM API ํ˜ธ์ถœ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ")
90
- return "์š”์•ฝ์„ ์ƒ์„ฑํ•˜๋Š” ๋™์•ˆ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‚˜์ค‘์— ๋‹ค์‹œ ์‹œ๋„ํ•ด ์ฃผ์„ธ์š”."
91
-
92
- # ํ…์ŠคํŠธ ์š”์•ฝ ํ•จ์ˆ˜
93
- def summarize_text(text):
94
- prompt = text # ํ”„๋กฌํ”„ํŠธ๋ฅผ ์›๋ณธ ํ…์ŠคํŠธ๋กœ ์„ค์ •ํ•˜์—ฌ self-discover ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•จ
95
-
96
- try:
97
- return call_api(prompt, max_tokens=2000, temperature=0.3, top_p=0.9)
98
  except Exception as e:
99
  logging.exception("์š”์•ฝ ์ƒ์„ฑ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ")
100
- return "์š”์•ฝ์„ ์ƒ์„ฑํ•˜๋Š” ๋™์•ˆ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‚˜์ค‘์— ๋‹ค์‹œ ์‹œ๋„ํ•ด ์ฃผ์„ธ์š”."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
- # Gradio ์ธํ„ฐํŽ˜์ด์Šค ์„ค์ •
103
  with gr.Blocks() as demo:
104
  gr.Markdown("## YouTube ์Šคํฌ๋ฆฝํŠธ ์ถ”์ถœ ๋ฐ ์š”์•ฝ ๋„๊ตฌ")
105
 
106
  youtube_url_input = gr.Textbox(label="YouTube URL ์ž…๋ ฅ")
107
  analyze_button = gr.Button("๋ถ„์„ํ•˜๊ธฐ")
108
- script_output = gr.HTML(label="์Šคํฌ๋ฆฝํŠธ")
109
- summary_output = gr.HTML(label="์š”์•ฝ")
110
 
111
- # ์บ์‹œ๋ฅผ ์œ„ํ•œ ์ƒํƒœ ๋ณ€์ˆ˜
112
- cached_data = gr.State({"url": "", "title": "", "script": ""})
113
-
114
- def extract_and_cache(url, cache):
115
- if url == cache["url"]:
116
- return cache["title"], cache["script"], cache
117
-
118
- title, script = get_youtube_script(url)
119
- new_cache = {"url": url, "title": title, "script": script}
120
- return title, script, new_cache
121
-
122
- def display_script(title, script):
123
- formatted_script = "\n".join(split_sentences(script))
124
- script_html = f"""<h2 style='font-size:24px;'>{title}</h2>
125
- <details>
126
- <summary><h3>์›๋ฌธ ์Šคํฌ๋ฆฝํŠธ (ํด๋ฆญํ•˜์—ฌ ํŽผ์น˜๊ธฐ)</h3></summary>
127
- <div style="white-space: pre-wrap;">{formatted_script}</div>
128
- </details>"""
129
- return script_html
130
-
131
- def generate_summary(script):
132
- summary = summarize_text(script)
133
- # ์š”์•ฝ ๊ฒฐ๊ณผ๋ฅผ ์ž˜ ํ‘œ์‹œํ•˜๊ธฐ ์œ„ํ•ด div ํƒœ๊ทธ์™€ CSS ์Šคํƒ€์ผ ์ ์šฉ
134
- summary_html = f"""
135
- <h3>์š”์•ฝ:</h3>
136
- <div style="white-space: pre-wrap; max-height: 400px; overflow-y: auto; border: 1px solid #ccc; padding: 10px;">
137
- {summary}
138
- </div>
139
- """
140
- return summary_html
141
 
142
  def analyze(url, cache):
143
- title, script, new_cache = extract_and_cache(url, cache)
144
- script_html = display_script(title, script)
145
- return script_html, new_cache
146
 
147
- def update_summary(cache):
148
- if not cache["script"]:
149
- return "์Šคํฌ๋ฆฝํŠธ๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค. ๋จผ์ € YouTube URL์„ ์ž…๋ ฅํ•˜๊ณ  ๋ถ„์„์„ ์‹คํ–‰ํ•ด์ฃผ์„ธ์š”."
150
- return generate_summary(cache["script"])
151
 
152
- # ๋ฒ„ํŠผ ํด๋ฆญ ์‹œ ์Šคํฌ๋ฆฝํŠธ ์ถ”์ถœ
153
  analyze_button.click(
154
  analyze,
155
  inputs=[youtube_url_input, cached_data],
156
- outputs=[script_output, cached_data]
157
- ).then(
158
- update_summary,
159
- inputs=[cached_data],
160
- outputs=summary_output
161
  )
162
 
163
- # ์ธํ„ฐํŽ˜์ด์Šค ์‹คํ–‰
164
  demo.launch(share=True)
 
5
  import ast
6
  import openai
7
  import os
 
8
  import re
9
+ from sklearn.feature_extraction.text import TfidfVectorizer
10
+ from multiprocessing import Pool, cpu_count
11
 
 
12
  logging.basicConfig(filename='youtube_script_extractor.log', level=logging.DEBUG,
13
  format='%(asctime)s - %(levelname)s - %(message)s')
14
 
15
+ openai.api_key = os.getenv("OPENAI_API_KEY")
16
+
17
  def parse_api_response(response):
18
  try:
19
  if isinstance(response, str):
 
26
  except Exception as e:
27
  raise ValueError(f"API ์‘๋‹ต ํŒŒ์‹ฑ ์‹คํŒจ: {str(e)}")
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  def get_youtube_script(url):
30
  logging.info(f"์Šคํฌ๋ฆฝํŠธ ์ถ”์ถœ ์‹œ์ž‘: URL = {url}")
 
 
31
  client = Client("whispersound/YT_Ts_R")
32
 
33
  try:
 
35
  result = client.predict(youtube_url=url, api_name="/predict")
36
  logging.debug("API ํ˜ธ์ถœ ์™„๋ฃŒ")
37
 
 
38
  parsed_result = parse_api_response(result)
39
 
40
  title = parsed_result["data"][0]["title"]
41
  transcription_text = parsed_result["data"][0]["transcriptionAsText"]
42
+ original_sections = parsed_result["data"][0]["sections"]
43
+
44
+ merged_sections = merge_sections(original_sections)
45
+ processed_sections = process_merged_sections_parallel(merged_sections)
46
+
47
+ logging.info("์Šคํฌ๋ฆฝํŠธ ์ถ”์ถœ ๋ฐ ์ฒ˜๋ฆฌ ์™„๋ฃŒ")
48
+ return title, transcription_text, processed_sections
49
 
50
  except Exception as e:
51
  error_msg = f"์Šคํฌ๋ฆฝํŠธ ์ถ”์ถœ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}"
52
  logging.exception(error_msg)
53
+ return "", "", []
54
 
55
+ def is_same_topic_tfidf(text1, text2, threshold=0.3):
56
+ vectorizer = TfidfVectorizer().fit([text1, text2])
57
+ vectors = vectorizer.transform([text1, text2])
58
+ similarity = (vectors[0] * vectors[1].T).A[0][0]
59
+ return similarity > threshold
60
 
61
+ def merge_sections(sections, min_duration=60, max_duration=300):
62
+ merged_sections = []
63
+ current_section = sections[0].copy()
64
+
65
+ for section in sections[1:]:
66
+ duration = current_section['end_time'] - current_section['start_time']
67
+
68
+ if duration < min_duration:
69
+ current_section['end_time'] = section['end_time']
70
+ current_section['text'] += ' ' + section['text']
71
+ elif duration >= max_duration:
72
+ merged_sections.append(current_section)
73
+ current_section = section.copy()
74
+ else:
75
+ if is_same_topic_tfidf(current_section['text'], section['text']):
76
+ current_section['end_time'] = section['end_time']
77
+ current_section['text'] += ' ' + section['text']
78
+ else:
79
+ merged_sections.append(current_section)
80
+ current_section = section.copy()
81
+
82
+ merged_sections.append(current_section)
83
+ return merged_sections
84
+
85
+ def summarize_section(section_text):
86
+ prompt = f"""
87
+ ๋‹ค์Œ ์œ ํŠœ๋ธŒ ๋Œ€๋ณธ ์„น์…˜์˜ ํ•ต์‹ฌ ๋‚ด์šฉ์„ ๊ฐ„๊ฒฐํ•˜๊ฒŒ ์š”์•ฝํ•˜์„ธ์š”:
88
+ 1. ํ•œ๊ธ€๋กœ ์ž‘์„ฑํ•˜์„ธ์š”.
89
+ 2. ์ฃผ์š” ๋…ผ์ ๊ณผ ์ค‘์š”ํ•œ ์„ธ๋ถ€์‚ฌํ•ญ์„ ํฌํ•จํ•˜์„ธ์š”.
90
+ 3. ์š”์•ฝ์€ 2-3๋ฌธ์žฅ์œผ๋กœ ์ œํ•œํ•˜์„ธ์š”.
91
+
92
+ ์„น์…˜ ๋‚ด์šฉ:
93
+ {section_text}
94
+ """
95
  try:
96
  response = openai.ChatCompletion.create(
97
+ model="gpt-4o-mini",
98
  messages=[{"role": "user", "content": prompt}],
99
+ max_tokens=150,
100
+ temperature=0.3,
101
+ top_p=0.9
102
  )
103
  return response['choices'][0]['message']['content']
 
 
 
 
 
 
 
 
 
 
104
  except Exception as e:
105
  logging.exception("์š”์•ฝ ์ƒ์„ฑ ์ค‘ ์˜ค๋ฅ˜ ๋ฐœ์ƒ")
106
+ return "์š”์•ฝ์„ ์ƒ์„ฑํ•˜๋Š” ๋™์•ˆ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค."
107
+
108
+ def process_section(section):
109
+ summary = summarize_section(section['text'])
110
+ return {
111
+ 'start_time': section['start_time'],
112
+ 'end_time': section['end_time'],
113
+ 'summary': summary
114
+ }
115
+
116
+ def process_merged_sections_parallel(merged_sections):
117
+ with Pool(processes=cpu_count()) as pool:
118
+ return pool.map(process_section, merged_sections)
119
+
120
+ def format_time(seconds):
121
+ minutes, seconds = divmod(seconds, 60)
122
+ hours, minutes = divmod(minutes, 60)
123
+ return f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d}"
124
+
125
+ def generate_timeline_summary(processed_sections):
126
+ timeline_summary = ""
127
+ for i, section in enumerate(processed_sections, 1):
128
+ start_time = format_time(section['start_time'])
129
+ end_time = format_time(section['end_time'])
130
+ timeline_summary += f"{start_time} - {end_time} {i}. {section['summary']}\n\n"
131
+ return timeline_summary
132
+
133
+ def display_script_and_summary(title, script, processed_sections):
134
+ timeline_summary = generate_timeline_summary(processed_sections)
135
+
136
+ script_html = f"""<h2 style='font-size:24px;'>{title}</h2>
137
+ <h3>ํƒ€์ž„๋ผ์ธ ์š”์•ฝ:</h3>
138
+ <div style="white-space: pre-wrap; max-height: 400px; overflow-y: auto; border: 1px solid #ccc; padding: 10px;">
139
+ {timeline_summary}
140
+ </div>
141
+ <details>
142
+ <summary><h3>์›๋ฌธ ์Šคํฌ๋ฆฝํŠธ (ํด๋ฆญํ•˜์—ฌ ํŽผ์น˜๊ธฐ)</h3></summary>
143
+ <div style="white-space: pre-wrap;">{script}</div>
144
+ </details>"""
145
+ return script_html
146
 
 
147
  with gr.Blocks() as demo:
148
  gr.Markdown("## YouTube ์Šคํฌ๋ฆฝํŠธ ์ถ”์ถœ ๋ฐ ์š”์•ฝ ๋„๊ตฌ")
149
 
150
  youtube_url_input = gr.Textbox(label="YouTube URL ์ž…๋ ฅ")
151
  analyze_button = gr.Button("๋ถ„์„ํ•˜๊ธฐ")
152
+ output = gr.HTML(label="๊ฒฐ๊ณผ")
 
153
 
154
+ cached_data = gr.State({"url": "", "title": "", "script": "", "processed_sections": []})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
 
156
  def analyze(url, cache):
157
+ if url == cache["url"]:
158
+ return display_script_and_summary(cache["title"], cache["script"], cache["processed_sections"]), cache
 
159
 
160
+ title, script, processed_sections = get_youtube_script(url)
161
+ new_cache = {"url": url, "title": title, "script": script, "processed_sections": processed_sections}
162
+ return display_script_and_summary(title, script, processed_sections), new_cache
 
163
 
 
164
  analyze_button.click(
165
  analyze,
166
  inputs=[youtube_url_input, cached_data],
167
+ outputs=[output, cached_data]
 
 
 
 
168
  )
169
 
 
170
  demo.launch(share=True)