Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 2,991 Bytes
			
			| 9c880cb 5bdf9aa 9c880cb 6c72519 a5db718 6c72519 a5db718 6c72519 a5db718 1e06dbb 5bdf9aa 6c72519 5bdf9aa 6c72519 a5db718 bf4739d 5bdf9aa 6c72519 9c880cb 1e06dbb 6c9ad89 1e06dbb 6c72519 9c880cb 5bdf9aa bf4739d | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 | import gradio as gr
from huggingface_hub import InferenceClient
import os
hf_token = os.getenv("HF_TOKEN")
def get_model_response(client, messages, max_tokens, temperature, top_p):
    try:
        response = client.chat_completion(
            messages,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            stream=True
        )
        for message in response:
            token = message.choices[0].delta.content if hasattr(message.choices[0], 'delta') else message.choices[0].text
            if token:
                yield token
    except Exception as e:
        yield f"모델 추론 실패: {str(e)}"
def respond(message, history, system_message, max_tokens, temperature, top_p, selected_model):
    try:
        client = InferenceClient(model=selected_model, token=hf_token)
        
        messages = [{"role": "system", "content": system_message}]
        messages.extend([{"role": "user" if i % 2 == 0 else "assistant", "content": m} for h in history for i, m in enumerate(h) if m])
        messages.append({"role": "user", "content": message})
        
        response = ""
        for token in get_model_response(client, messages, max_tokens, temperature, top_p):
            response += token
            yield response
        
        if not response:
            yield "모델이 응답을 생성하지 못했습니다. 다른 입력이나 모델을 시도해보세요."
    except Exception as e:
        yield f"오류 발생: {str(e)}"
models = {
    "deepseek-ai/DeepSeek-Coder-V2-Instruct": "DeepSeek-Coder-V2-Instruct",
    "CohereForAI/c4ai-command-r-plus": "Cohere Command-R Plus",
    "meta-llama/Meta-Llama-3.1-8B-Instruct": "Meta-Llama-3.1-8B-Instruct"
}
with gr.Blocks() as demo:
    chatbot = gr.Chatbot()
    msg = gr.Textbox()
    clear = gr.ClearButton([msg, chatbot])
    with gr.Accordion("Additional Inputs", open=True):
        system_message = gr.Textbox(
            value="너는 나의 최고의 비서이다.\n내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.\n반드시 한글로 답변할것.",
            label="시스템 메시지",
            lines=20
        )
        max_tokens = gr.Slider(minimum=1, maximum=2000, value=500, step=100, label="최대 새 토큰 수")
        temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="온도")
        top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.90, step=0.05, label="Top-p (핵 샘플링)")
        model = gr.Radio(list(models.keys()), value=list(models.keys())[0], label="언어 모델 선택", info="사용할 언어 모델을 선택하세요")
    msg.submit(respond, [msg, chatbot, system_message, max_tokens, temperature, top_p, model], chatbot)
if __name__ == "__main__":
    if not hf_token:
        print("경고: HF_TOKEN 환경 변수가 설정되지 않았습니다. 일부 모델에 접근할 수 없을 수 있습니다.")
    demo.launch(share=True) | 
