Spaces:
Runtime error
Runtime error
File size: 4,395 Bytes
edf2a04 ebe55ae 511e5e9 5b7a61e a496030 ef43705 a496030 ef43705 a496030 e72ab86 a496030 ef43705 a496030 ebe55ae a496030 ef43705 a496030 e72ab86 a496030 ef43705 a496030 ebe55ae a496030 ef43705 a496030 ebe55ae a496030 ef43705 a496030 ef43705 a496030 ef43705 a496030 ef43705 a496030 ef43705 e72ab86 fb4f3f2 ff5d575 fb4f3f2 5becc54 fb4f3f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import gradio as gr
import os
import requests
SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
TITLE = "Image Prompter"
EXAMPLE_INPUT = "A Reflective cat between stars."
# Path to your local image file
enticing_image_path = "C:/Users/alain/Downloads/enticing_image.jpg"
html_temp = f"""
<!DOCTYPE html>
<html>
<head>
<style>
body {{
font-family: Arial, sans-serif;
}}
.container {{
text-align: center;
background-color: #f4f4f4;
padding: 20px;
border-radius: 10px;
}}
h1 {{
color: #333;
}}
.enticing-image {{
width: 100px;
height: 100px;
border-radius: 50%;
position: absolute;
top: 0;
right: 0;
}}
.main-image {{
width: 300px;
height: 300px;
border-radius: 50%;
}}
p {{
font-size: 18px;
color: #555;
}}
</style>
</head>
<body>
<div class="container">
<h1>{TITLE}</h1>
<div class="enticing-image">
<img src='{enticing_image_path}' alt='Enticing Image'>
</div>
<img class="main-image" src='https://huggingface.co/spaces/NerdN/open-gpt-Image-Prompter/blob/main/_45a03b4d-ea0f-4b81-873d-ff6b10461d52.jpg' alt='Your Image'>
<p>{EXAMPLE_INPUT}</p>
</div>
</body>
</html>
""".format(TITLE, enticing_image_path, EXAMPLE_INPUT)
zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta/"
HF_TOKEN = os.getenv("HF_TOKEN")
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
def build_input_prompt(message, chatbot, system_prompt):
"""
Constructs the input prompt string from the chatbot interactions and the current message.
"""
input_prompt = "<|system|>\n" + system_prompt + "</s>\n<|user|>\n"
for interaction in chatbot:
input_prompt = input_prompt + str(interaction[0]) + "</s>\n<|assistant|>\n" + str(interaction[1]) + "\n</s>\n<|user|>\n"
input_prompt = input_prompt + str(message) + "</s>\n<|assistant|>"
return input_prompt
def post_request_beta(payload):
"""
Sends a POST request to the predefined Zephyr-7b-Beta URL and returns the JSON response.
"""
response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
return response.json()
def predict_beta(message, chatbot=[], system_prompt=""):
input_prompt = build_input_prompt(message, chatbot, system_prompt)
data = {
"inputs": input_prompt
}
try:
response_data = post_request_beta(data)
json_obj = response_data[0]
if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
bot_message = json_obj['generated_text']
return bot_message
elif 'error' in json_obj:
raise gr.Error(json_obj['error'] + ' Please refresh and try again with smaller input prompt')
else:
warning_msg = f"Unexpected response: {json_obj}"
raise gr.Error(warning_msg)
except requests.HTTPError as e:
error_msg = f"Request failed with status code {e.response.status_code}"
raise gr.Error(error_msg)
except json.JSONDecodeError as e:
error_msg = f"Failed to decode response as JSON: {str(e)}"
raise gr.Error(error_msg)
def test_preview_chatbot(message, history):
response = predict_beta(message, history, SYSTEM_PROMPT)
text_start = response.rfind("<|assistant|>", ) + len("<|assistant|>")
response = response[text_start:]
return response
welcome_preview_message = f"""
Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}**!:\nThis is a chatbot that can generate detailed prompts for image generation models based on simple and short user input.\nSay something like:
"{EXAMPLE_INPUT}"
"""
chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)
demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview)
demo.launch(share=True) |