File size: 4,395 Bytes
edf2a04
 
 
ebe55ae
511e5e9
 
 
 
 
5b7a61e
 
a496030
ef43705
 
 
 
a496030
ef43705
a496030
e72ab86
a496030
ef43705
 
 
 
a496030
ebe55ae
a496030
ef43705
a496030
e72ab86
a496030
ef43705
 
 
 
 
 
a496030
ebe55ae
a496030
ef43705
 
 
a496030
ebe55ae
a496030
ef43705
 
a496030
ef43705
 
 
 
a496030
ef43705
a496030
ef43705
 
a496030
ef43705
 
 
 
e72ab86
fb4f3f2
ff5d575
fb4f3f2
 
5becc54
fb4f3f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
import os
import requests

SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
TITLE = "Image Prompter"
EXAMPLE_INPUT = "A Reflective cat between stars."

# Path to your local image file
enticing_image_path = "C:/Users/alain/Downloads/enticing_image.jpg"

html_temp = f"""
<!DOCTYPE html>
<html>
<head>
<style>
    body {{
        font-family: Arial, sans-serif;
    }}

    .container {{
        text-align: center;
        background-color: #f4f4f4;
        padding: 20px;
        border-radius: 10px;
    }}

    h1 {{
        color: #333;
    }}

    .enticing-image {{
        width: 100px;
        height: 100px;
        border-radius: 50%;
        position: absolute;
        top: 0;
        right: 0;
    }}

    .main-image {{
        width: 300px;
        height: 300px;
        border-radius: 50%;
    }}

    p {{
        font-size: 18px;
        color: #555;
    }}
</style>
</head>
<body>
    <div class="container">
        <h1>{TITLE}</h1>
        <div class="enticing-image">
            <img src='{enticing_image_path}' alt='Enticing Image'>
        </div>
        <img class="main-image" src='https://huggingface.co/spaces/NerdN/open-gpt-Image-Prompter/blob/main/_45a03b4d-ea0f-4b81-873d-ff6b10461d52.jpg' alt='Your Image'>
        <p>{EXAMPLE_INPUT}</p>
    </div>
</body>
</html>
""".format(TITLE, enticing_image_path, EXAMPLE_INPUT)

zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta/"

HF_TOKEN = os.getenv("HF_TOKEN")
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}

def build_input_prompt(message, chatbot, system_prompt):
    """
    Constructs the input prompt string from the chatbot interactions and the current message.
    """
    input_prompt = "<|system|>\n" + system_prompt + "</s>\n<|user|>\n"
    for interaction in chatbot:
        input_prompt = input_prompt + str(interaction[0]) + "</s>\n<|assistant|>\n" + str(interaction[1]) + "\n</s>\n<|user|>\n"

    input_prompt = input_prompt + str(message) + "</s>\n<|assistant|>"
    return input_prompt


def post_request_beta(payload):
    """
    Sends a POST request to the predefined Zephyr-7b-Beta URL and returns the JSON response.
    """
    response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
    response.raise_for_status()  # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
    return response.json()


def predict_beta(message, chatbot=[], system_prompt=""):
    input_prompt = build_input_prompt(message, chatbot, system_prompt)
    data = {
        "inputs": input_prompt
    }

    try:
        response_data = post_request_beta(data)
        json_obj = response_data[0]
        
        if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
            bot_message = json_obj['generated_text']
            return bot_message
        elif 'error' in json_obj:
            raise gr.Error(json_obj['error'] + ' Please refresh and try again with smaller input prompt')
        else:
            warning_msg = f"Unexpected response: {json_obj}"
            raise gr.Error(warning_msg)
    except requests.HTTPError as e:
        error_msg = f"Request failed with status code {e.response.status_code}"
        raise gr.Error(error_msg)
    except json.JSONDecodeError as e:
        error_msg = f"Failed to decode response as JSON: {str(e)}"
        raise gr.Error(error_msg)

def test_preview_chatbot(message, history):
    response = predict_beta(message, history, SYSTEM_PROMPT)
    text_start = response.rfind("<|assistant|>", ) + len("<|assistant|>")
    response = response[text_start:]
    return response


welcome_preview_message = f"""
Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}**!:\nThis is a chatbot that can generate detailed prompts for image generation models based on simple and short user input.\nSay something like: 

"{EXAMPLE_INPUT}"
"""

chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)

demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview)


demo.launch(share=True)