TA commited on
Commit
511e5e9
·
1 Parent(s): c390ea0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -22
app.py CHANGED
@@ -1,20 +1,24 @@
1
- SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
2
- TITLE = "Image Prompter"
3
- EXAMPLE_INPUT = "A Reflective cat between stars."
4
  import gradio as gr
5
  import os
6
  import requests
7
 
 
 
 
 
 
 
 
8
  html_temp = """
9
  <div style="text-align: center; background-color: #f4f4f4; padding: 20px; border-radius: 10px; position: relative;">
10
  <h1 style="color: #333;">{}</h1>
11
  <div style="position: absolute; top: 0; right: 0;">
12
- <img src='https://your-enticing-image-url.jpg' alt='Enticing Image' style='width: 100px; height: 100px; border-radius: 50%;'>
13
  </div>
14
  <img src='https://huggingface.co/spaces/NerdN/open-gpt-Image-Prompter/blob/main/_45a03b4d-ea0f-4b81-873d-ff6b10461d52.jpg' alt='Your Image' style='width: 300px; height: 300px; border-radius: 50%;'>
15
  <p style="font-size: 18px; color: #555;">{}</p>
16
  </div>
17
- """.format(TITLE, EXAMPLE_INPUT)
18
 
19
  zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta/"
20
 
@@ -22,26 +26,18 @@ HF_TOKEN = os.getenv("HF_TOKEN")
22
  HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
23
 
24
  def build_input_prompt(message, chatbot, system_prompt):
25
- """
26
- Constructs the input prompt string from the chatbot interactions and the current message.
27
- """
28
- input_prompt = "<|system|>\n" + system_prompt + "</s>\n<|user|>\n"
29
  for interaction in chatbot:
30
- input_prompt = input_prompt + str(interaction[0]) + "</s>\n<|assistant|>\n" + str(interaction[1]) + "\n</s>\n<|user|>\n"
31
 
32
- input_prompt = input_prompt + str(message) + "</s>\n<|assistant|>"
33
  return input_prompt
34
 
35
-
36
  def post_request_beta(payload):
37
- """
38
- Sends a POST request to the predefined Zephyr-7b-Beta URL and returns the JSON response.
39
- """
40
  response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
41
- response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
42
  return response.json()
43
 
44
-
45
  def predict_beta(message, chatbot=[], system_prompt=""):
46
  input_prompt = build_input_prompt(message, chatbot, system_prompt)
47
  data = {
@@ -69,11 +65,10 @@ def predict_beta(message, chatbot=[], system_prompt=""):
69
 
70
  def test_preview_chatbot(message, history):
71
  response = predict_beta(message, history, SYSTEM_PROMPT)
72
- text_start = response.rfind("<|assistant|>", ) + len("<|assistant|>")
73
  response = response[text_start:]
74
  return response
75
 
76
-
77
  welcome_preview_message = f"""
78
  Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}**!:\nThis is a chatbot that can generate detailed prompts for image generation models based on simple and short user input.\nSay something like:
79
 
@@ -83,7 +78,6 @@ Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}
83
  chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
84
  textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)
85
 
86
- demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview)
87
-
88
 
89
- demo.launch(share=True)
 
 
 
 
1
  import gradio as gr
2
  import os
3
  import requests
4
 
5
+ SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
6
+ TITLE = "Image Prompter"
7
+ EXAMPLE_INPUT = "A Reflective cat between stars."
8
+
9
+ # Path to your local image file
10
+ enticing_image_path = "C:\Users\alain\Downloads"
11
+
12
  html_temp = """
13
  <div style="text-align: center; background-color: #f4f4f4; padding: 20px; border-radius: 10px; position: relative;">
14
  <h1 style="color: #333;">{}</h1>
15
  <div style="position: absolute; top: 0; right: 0;">
16
+ <img src='{}' alt='Enticing Image' style='width: 100px; height: 100px; border-radius: 50%;'>
17
  </div>
18
  <img src='https://huggingface.co/spaces/NerdN/open-gpt-Image-Prompter/blob/main/_45a03b4d-ea0f-4b81-873d-ff6b10461d52.jpg' alt='Your Image' style='width: 300px; height: 300px; border-radius: 50%;'>
19
  <p style="font-size: 18px; color: #555;">{}</p>
20
  </div>
21
+ """.format(TITLE, enticing_image_path, EXAMPLE_INPUT)
22
 
23
  zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta/"
24
 
 
26
  HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}
27
 
28
  def build_input_prompt(message, chatbot, system_prompt):
29
+ input_prompt = "\n" + system_prompt + "</s>\n\n"
 
 
 
30
  for interaction in chatbot:
31
+ input_prompt = input_prompt + str(interaction[0]) + "</s>\n\n" + str(interaction[1]) + "\n</s>\n\n"
32
 
33
+ input_prompt = input_prompt + str(message) + "</s>\n"
34
  return input_prompt
35
 
 
36
  def post_request_beta(payload):
 
 
 
37
  response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
38
+ response.raise_for_status()
39
  return response.json()
40
 
 
41
  def predict_beta(message, chatbot=[], system_prompt=""):
42
  input_prompt = build_input_prompt(message, chatbot, system_prompt)
43
  data = {
 
65
 
66
  def test_preview_chatbot(message, history):
67
  response = predict_beta(message, history, SYSTEM_PROMPT)
68
+ text_start = response.rfind("", ) + len("")
69
  response = response[text_start:]
70
  return response
71
 
 
72
  welcome_preview_message = f"""
73
  Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}**!:\nThis is a chatbot that can generate detailed prompts for image generation models based on simple and short user input.\nSay something like:
74
 
 
78
  chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
79
  textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)
80
 
81
+ demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview, title=None, html=html_temp)
 
82
 
83
+ demo.launch(share=True)