File size: 3,470 Bytes
edf2a04
 
 
ebe55ae
511e5e9
 
 
 
 
5b7a61e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8edb732
e72ab86
 
 
 
 
 
511e5e9
e72ab86
511e5e9
ebe55ae
511e5e9
e72ab86
 
 
 
511e5e9
e72ab86
 
ebe55ae
e72ab86
ebe55ae
 
 
 
e72ab86
 
 
ebe55ae
e72ab86
 
 
 
ebe55ae
e72ab86
 
 
 
 
 
 
 
 
 
ebe55ae
e72ab86
511e5e9
ebe55ae
 
 
 
 
 
 
 
e72ab86
ebe55ae
 
ff5d575
5b7a61e
5becc54
511e5e9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import gradio as gr
import os
import requests

SYSTEM_PROMPT = "As an LLM, your job is to generate detailed prompts that start with generate the image, for image generation models based on user input. Be descriptive and specific, but also make sure your prompts are clear and concise."
TITLE = "Image Prompter"
EXAMPLE_INPUT = "A Reflective cat between stars."

# Path to your local image file
enticing_image_path = "C:/Users/alain/Downloads/enticing_image.jpg"

style = """
    div {
        text-align: center;
        background-color: #f4f4f4;
        padding: 20px;
        border-radius: 10px;
        position: relative;
    }
    
    h1 {
        color: #333;
    }

    img.enticing {
        width: 100px;
        height: 100px;
        border-radius: 50%;
        position: absolute;
        top: 0;
        right: 0;
    }

    img.main {
        width: 300px;
        height: 300px;
        border-radius: 50%;
    }

    p {
        font-size: 18px;
        color: #555;
    }
"""

zephyr_7b_beta = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta/"

HF_TOKEN = os.getenv("HF_TOKEN")
HEADERS = {"Authorization": f"Bearer {HF_TOKEN}"}

def build_input_prompt(message, chatbot, system_prompt):
    input_prompt = "\n" + system_prompt + "</s>\n\n"
    for interaction in chatbot:
        input_prompt = input_prompt + str(interaction[0]) + "</s>\n\n" + str(interaction[1]) + "\n</s>\n\n"

    input_prompt = input_prompt + str(message) + "</s>\n"
    return input_prompt

def post_request_beta(payload):
    response = requests.post(zephyr_7b_beta, headers=HEADERS, json=payload)
    response.raise_for_status()
    return response.json()

def predict_beta(message, chatbot=[], system_prompt=""):
    input_prompt = build_input_prompt(message, chatbot, system_prompt)
    data = {
        "inputs": input_prompt
    }

    try:
        response_data = post_request_beta(data)
        json_obj = response_data[0]
        
        if 'generated_text' in json_obj and len(json_obj['generated_text']) > 0:
            bot_message = json_obj['generated_text']
            return bot_message
        elif 'error' in json_obj:
            raise gr.Error(json_obj['error'] + ' Please refresh and try again with smaller input prompt')
        else:
            warning_msg = f"Unexpected response: {json_obj}"
            raise gr.Error(warning_msg)
    except requests.HTTPError as e:
        error_msg = f"Request failed with status code {e.response.status_code}"
        raise gr.Error(error_msg)
    except json.JSONDecodeError as e:
        error_msg = f"Failed to decode response as JSON: {str(e)}"
        raise gr.Error(error_msg)

def test_preview_chatbot(message, history):
    response = predict_beta(message, history, SYSTEM_PROMPT)
    text_start = response.rfind("", ) + len("")
    response = response[text_start:]
    return response

welcome_preview_message = f"""
Expand your imagination and broaden your horizons with LLM. Welcome to **{TITLE}**!:\nThis is a chatbot that can generate detailed prompts for image generation models based on simple and short user input.\nSay something like: 

"{EXAMPLE_INPUT}"
"""

chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)])
textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT)

demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview, title=None, style=style)

demo.launch(share=True)