Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import gradio as gr | |
| import torch | |
| import os | |
| import spaces | |
| import uuid | |
| from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler | |
| from diffusers.utils import export_to_video | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| from PIL import Image | |
| # Constants | |
| bases = { | |
| "Cartoon": "frankjoshua/toonyou_beta6", | |
| "Realistic": "emilianJR/epiCRealism", | |
| "3d": "Lykon/DreamShaper", | |
| "Anime": "Yntec/mistoonAnime2" | |
| } | |
| motion_models = { | |
| "Default": None, | |
| "Zoom in": "guoyww/animatediff-motion-lora-zoom-in", | |
| "Zoom out": "guoyww/animatediff-motion-lora-zoom-out", | |
| "Tilt up": "guoyww/animatediff-motion-lora-tilt-up", | |
| "Tilt down": "guoyww/animatediff-motion-lora-tilt-down", | |
| "Pan left": "guoyww/animatediff-motion-lora-pan-left", | |
| "Pan right": "guoyww/animatediff-motion-lora-pan-right", | |
| "Roll left": "guoyww/animatediff-motion-lora-rolling-anticlockwise", | |
| "Roll right": "guoyww/animatediff-motion-lora-rolling-clockwise", | |
| } | |
| # Preload models | |
| if not torch.cuda.is_available(): | |
| raise NotImplementedError("No GPU detected!") | |
| device = "cuda" | |
| dtype = torch.float16 | |
| pipes = {} | |
| for base_name, base_path in bases.items(): | |
| pipe = AnimateDiffPipeline.from_pretrained(base_path, torch_dtype=dtype).to(device) | |
| pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") | |
| pipes[base_name] = pipe | |
| # Load motion models | |
| for motion_name, motion_path in motion_models.items(): | |
| if motion_path: | |
| motion_model = MotionAdapter.from_pretrained(motion_path, torch_dtype=dtype).to(device) | |
| motion_models[motion_name] = motion_model | |
| # Function | |
| def generate_image(prompt, base="Realistic", motion="Default", step=8, progress=gr.Progress()): | |
| global pipes | |
| global motion_models | |
| pipe = pipes[base] | |
| if motion != "Default": | |
| pipe.motion_adapter = motion_models[motion] | |
| else: | |
| pipe.motion_adapter = None | |
| # Load step model if not already loaded | |
| repo = "ByteDance/AnimateDiff-Lightning" | |
| ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" | |
| try: | |
| pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt, local_files_only=True), device=device), strict=False) | |
| except: | |
| pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) | |
| # Generate image | |
| output = pipe(prompt=f"{base} image of {prompt}", guidance_scale=1.2, num_inference_steps=step) | |
| name = str(uuid.uuid4()).replace("-", "") | |
| path = f"/tmp/{name}.mp4" | |
| export_to_video(output.frames[0], path, fps=10) | |
| return path | |
| # Gradio Interface | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.HTML( | |
| "<h1><center>Instant⚡Video</center></h1>" + | |
| "<p><center><span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results.</center></p>" + | |
| "<p><center><strong>First Video Generating takes time then Videos generate faster.</p>" + | |
| "<p><center>To get best results Make Sure to Write prompts in style as Given in Examples/p>" + | |
| "<p><a href='https://huggingface.co/spaces/KingNish/Instant-Video/discussions/1' >Must Share you Best Results with Community - Click HERE<a></p>" | |
| ) | |
| with gr.Group(): | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| label='Prompt' | |
| ) | |
| with gr.Row(): | |
| select_base = gr.Dropdown( | |
| label='Base model', | |
| choices=[ | |
| "Cartoon", | |
| "Realistic", | |
| "3d", | |
| "Anime", | |
| ], | |
| value=base_loaded, | |
| interactive=True | |
| ) | |
| select_motion = gr.Dropdown( | |
| label='Motion', | |
| choices=[ | |
| ("Default", ""), | |
| ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"), | |
| ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"), | |
| ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"), | |
| ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"), | |
| ("Pan left", "guoyww/animatediff-motion-lora-pan-left"), | |
| ("Pan right", "guoyww/animatediff-motion-lora-pan-right"), | |
| ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"), | |
| ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"), | |
| ], | |
| value="guoyww/animatediff-motion-lora-zoom-in", | |
| interactive=True | |
| ) | |
| select_step = gr.Dropdown( | |
| label='Inference steps', | |
| choices=[ | |
| ('1-Step', 1), | |
| ('2-Step', 2), | |
| ('4-Step', 4), | |
| ('8-Step', 8), | |
| ], | |
| value=4, | |
| interactive=True | |
| ) | |
| submit = gr.Button( | |
| scale=1, | |
| variant='primary' | |
| ) | |
| video = gr.Video( | |
| label='AnimateDiff-Lightning', | |
| autoplay=True, | |
| height=512, | |
| width=512, | |
| elem_id="video_output" | |
| ) | |
| gr.on(triggers=[ | |
| submit.click, | |
| prompt.submit | |
| ], | |
| fn = generate_image, | |
| inputs = [prompt, select_base, select_motion, select_step], | |
| outputs = [video], | |
| api_name = "instant_video", | |
| queue = False | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["Focus: Eiffel Tower (Animate: Clouds moving)"], #Atmosphere Movement Example | |
| ["Focus: Trees In forest (Animate: Lion running)"], #Object Movement Example | |
| ["Focus: Astronaut in Space"], #Normal | |
| ["Focus: Group of Birds in sky (Animate: Birds Moving) (Shot From distance)"], #Camera distance | |
| ["Focus: Statue of liberty (Shot from Drone) (Animate: Drone coming toward statue)"], #Camera Movement | |
| ["Focus: Panda in Forest (Animate: Drinking Tea)"], #Doing Something | |
| ["Focus: Kids Playing (Season: Winter)"], #Atmosphere or Season | |
| {"Focus: Cars in Street (Season: Rain, Daytime) (Shot from Distance) (Movement: Cars running)"} #Mixture | |
| ], | |
| fn=generate_image, | |
| inputs=[prompt], | |
| outputs=[video], | |
| cache_examples="lazy", | |
| ) | |
| demo.queue().launch() | 
