import gradio as gr import torch import os import spaces import uuid from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler from diffusers.utils import export_to_video from huggingface_hub import hf_hub_download from safetensors.torch import load_file from PIL import Image # Constants bases = { "Cartoon": "frankjoshua/toonyou_beta6", "Realistic": "emilianJR/epiCRealism", "3d": "Lykon/DreamShaper", "Anime": "Yntec/mistoonAnime2" } motion_models = { "Default": None, "Zoom in": "guoyww/animatediff-motion-lora-zoom-in", "Zoom out": "guoyww/animatediff-motion-lora-zoom-out", "Tilt up": "guoyww/animatediff-motion-lora-tilt-up", "Tilt down": "guoyww/animatediff-motion-lora-tilt-down", "Pan left": "guoyww/animatediff-motion-lora-pan-left", "Pan right": "guoyww/animatediff-motion-lora-pan-right", "Roll left": "guoyww/animatediff-motion-lora-rolling-anticlockwise", "Roll right": "guoyww/animatediff-motion-lora-rolling-clockwise", } # Preload models if not torch.cuda.is_available(): raise NotImplementedError("No GPU detected!") device = "cuda" dtype = torch.float16 pipes = {} for base_name, base_path in bases.items(): pipe = AnimateDiffPipeline.from_pretrained(base_path, torch_dtype=dtype).to(device) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") pipes[base_name] = pipe # Load motion models for motion_name, motion_path in motion_models.items(): if motion_path: motion_model = MotionAdapter.from_pretrained(motion_path, torch_dtype=dtype).to(device) motion_models[motion_name] = motion_model # Function @spaces.GPU(duration=60,queue=False) def generate_image(prompt, base="Realistic", motion="Default", step=8, progress=gr.Progress()): global pipes global motion_models pipe = pipes[base] if motion != "Default": pipe.motion_adapter = motion_models[motion] else: pipe.motion_adapter = None # Load step model if not already loaded repo = "ByteDance/AnimateDiff-Lightning" ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" try: pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt, local_files_only=True), device=device), strict=False) except: pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) # Generate image output = pipe(prompt=f"{base} image of {prompt}", guidance_scale=1.2, num_inference_steps=step) name = str(uuid.uuid4()).replace("-", "") path = f"/tmp/{name}.mp4" export_to_video(output.frames[0], path, fps=10) return path # Gradio Interface with gr.Blocks(css="style.css") as demo: gr.HTML( "

Instant⚡Video

" + "

You may change the steps from 4 to 8, if you didn't get satisfied results.

" + "

First Video Generating takes time then Videos generate faster.

" + "

To get best results Make Sure to Write prompts in style as Given in Examples/p>" + "

Must Share you Best Results with Community - Click HERE

" ) with gr.Group(): with gr.Row(): prompt = gr.Textbox( label='Prompt' ) with gr.Row(): select_base = gr.Dropdown( label='Base model', choices=[ "Cartoon", "Realistic", "3d", "Anime", ], value=base_loaded, interactive=True ) select_motion = gr.Dropdown( label='Motion', choices=[ ("Default", ""), ("Zoom in", "guoyww/animatediff-motion-lora-zoom-in"), ("Zoom out", "guoyww/animatediff-motion-lora-zoom-out"), ("Tilt up", "guoyww/animatediff-motion-lora-tilt-up"), ("Tilt down", "guoyww/animatediff-motion-lora-tilt-down"), ("Pan left", "guoyww/animatediff-motion-lora-pan-left"), ("Pan right", "guoyww/animatediff-motion-lora-pan-right"), ("Roll left", "guoyww/animatediff-motion-lora-rolling-anticlockwise"), ("Roll right", "guoyww/animatediff-motion-lora-rolling-clockwise"), ], value="guoyww/animatediff-motion-lora-zoom-in", interactive=True ) select_step = gr.Dropdown( label='Inference steps', choices=[ ('1-Step', 1), ('2-Step', 2), ('4-Step', 4), ('8-Step', 8), ], value=4, interactive=True ) submit = gr.Button( scale=1, variant='primary' ) video = gr.Video( label='AnimateDiff-Lightning', autoplay=True, height=512, width=512, elem_id="video_output" ) gr.on(triggers=[ submit.click, prompt.submit ], fn = generate_image, inputs = [prompt, select_base, select_motion, select_step], outputs = [video], api_name = "instant_video", queue = False ) gr.Examples( examples=[ ["Focus: Eiffel Tower (Animate: Clouds moving)"], #Atmosphere Movement Example ["Focus: Trees In forest (Animate: Lion running)"], #Object Movement Example ["Focus: Astronaut in Space"], #Normal ["Focus: Group of Birds in sky (Animate: Birds Moving) (Shot From distance)"], #Camera distance ["Focus: Statue of liberty (Shot from Drone) (Animate: Drone coming toward statue)"], #Camera Movement ["Focus: Panda in Forest (Animate: Drinking Tea)"], #Doing Something ["Focus: Kids Playing (Season: Winter)"], #Atmosphere or Season {"Focus: Cars in Street (Season: Rain, Daytime) (Shot from Distance) (Movement: Cars running)"} #Mixture ], fn=generate_image, inputs=[prompt], outputs=[video], cache_examples="lazy", ) demo.queue().launch()