Spaces:
Sleeping
Sleeping
Merge branch 'cjs--classifier-v2'
Browse files- README.md +27 -1
- cfg/exp/5-5_cls.yaml +59 -0
- cfg/model/cls_panns_16k.yaml +15 -0
- cfg/model/cls_panns_44k.yaml +15 -0
- cfg/model/cls_panns_44k_noaug.yaml +15 -0
- cfg/model/{classifier.yaml → cls_panns_pt.yaml} +2 -5
- cfg/model/cls_vggish.yaml +11 -0
- cfg/model/cls_wav2clip.yaml +11 -0
- cfg/model/cls_wav2vec2.yaml +11 -0
- remfx/{cnn14.py → classifier.py} +159 -16
- remfx/models.py +37 -7
- setup.py +2 -2
- train_all.sh +6 -0
README.md
CHANGED
|
@@ -81,4 +81,30 @@ python scripts/download.py vocalset guitarset idmt-smt-guitar idmt-smt-bass idmt
|
|
| 81 |
To run audio effects classifiction:
|
| 82 |
```
|
| 83 |
python scripts/train.py model=classifier "effects_to_use=[compressor, distortion, reverb, chorus, delay]" "effects_to_remove=[]" max_kept_effects=5 max_removed_effects=0 shuffle_kept_effects=True shuffle_removed_effects=True accelerator='gpu' render_root=/scratch/RemFX render_files=True
|
| 84 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
To run audio effects classifiction:
|
| 82 |
```
|
| 83 |
python scripts/train.py model=classifier "effects_to_use=[compressor, distortion, reverb, chorus, delay]" "effects_to_remove=[]" max_kept_effects=5 max_removed_effects=0 shuffle_kept_effects=True shuffle_removed_effects=True accelerator='gpu' render_root=/scratch/RemFX render_files=True
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
```
|
| 87 |
+
srun --comment harmonai --partition=g40 --gpus=1 --cpus-per-gpu=12 --job-name=harmonai --pty bash -i
|
| 88 |
+
source env/bin/activate
|
| 89 |
+
rsync -aP /fsx/home-csteinmetz1/data/EffectSet_cjs.tar /scratch
|
| 90 |
+
tar -xvf EffectSet_cjs.tar
|
| 91 |
+
mv scratch/EffectSet_cjs ./EffectSet_cjs
|
| 92 |
+
|
| 93 |
+
export DATASET_ROOT="/admin/home-csteinmetz1/data/remfx-data"
|
| 94 |
+
export WANDB_PROJECT="RemFX"
|
| 95 |
+
export WANDB_ENTITY="cjstein"
|
| 96 |
+
|
| 97 |
+
python scripts/train.py +exp=5-5.yaml model=cls_vggish render_files=False logs_dir=/scratch/cjs-log datamodule.batch_size=64
|
| 98 |
+
python scripts/train.py +exp=5-5.yaml model=cls_panns_pt render_files=False logs_dir=/scratch/cjs-log datamodule.batch_size=64
|
| 99 |
+
python scripts/train.py +exp=5-5.yaml model=cls_wav2vec2 render_files=False logs_dir=/scratch/cjs-log datamodule.batch_size=64
|
| 100 |
+
python scripts/train.py +exp=5-5.yaml model=cls_wav2clip render_files=False logs_dir=/scratch/cjs-log datamodule.batch_size=64
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
### Installing HEAR models
|
| 104 |
+
|
| 105 |
+
wav2clip
|
| 106 |
+
```
|
| 107 |
+
pip install hearbaseline
|
| 108 |
+
pip install git+https://github.com/hohsiangwu/wav2clip-hear.git
|
| 109 |
+
pip install git+https://github.com/qiuqiangkong/HEAR2021_Challenge_PANNs
|
| 110 |
+
wget https://zenodo.org/record/6332525/files/hear2021-panns_hear.pth
|
cfg/exp/5-5_cls.yaml
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
defaults:
|
| 3 |
+
- override /model: demucs
|
| 4 |
+
- override /effects: all
|
| 5 |
+
seed: 12345
|
| 6 |
+
sample_rate: 48000
|
| 7 |
+
chunk_size: 262144 # 5.5s
|
| 8 |
+
logs_dir: "./logs"
|
| 9 |
+
render_files: True
|
| 10 |
+
render_root: "/scratch/EffectSet_cjs"
|
| 11 |
+
accelerator: "gpu"
|
| 12 |
+
log_audio: False
|
| 13 |
+
# Effects
|
| 14 |
+
num_kept_effects: [0,0] # [min, max]
|
| 15 |
+
num_removed_effects: [0,5] # [min, max]
|
| 16 |
+
shuffle_kept_effects: True
|
| 17 |
+
shuffle_removed_effects: True
|
| 18 |
+
num_classes: 5
|
| 19 |
+
effects_to_keep:
|
| 20 |
+
effects_to_remove:
|
| 21 |
+
- distortion
|
| 22 |
+
- compressor
|
| 23 |
+
- reverb
|
| 24 |
+
- chorus
|
| 25 |
+
- delay
|
| 26 |
+
datamodule:
|
| 27 |
+
batch_size: 64
|
| 28 |
+
num_workers: 8
|
| 29 |
+
|
| 30 |
+
callbacks:
|
| 31 |
+
model_checkpoint:
|
| 32 |
+
_target_: pytorch_lightning.callbacks.ModelCheckpoint
|
| 33 |
+
monitor: "valid_f1_avg_epoch" # name of the logged metric which determines when model is improving
|
| 34 |
+
save_top_k: 1 # save k best models (determined by above metric)
|
| 35 |
+
save_last: True # additionaly always save model from last epoch
|
| 36 |
+
mode: "max" # can be "max" or "min"
|
| 37 |
+
verbose: True
|
| 38 |
+
dirpath: ${logs_dir}/ckpts/${now:%Y-%m-%d-%H-%M-%S}
|
| 39 |
+
filename: '{epoch:02d}-{valid_f1_avg_epoch:.3f}'
|
| 40 |
+
learning_rate_monitor:
|
| 41 |
+
_target_: pytorch_lightning.callbacks.LearningRateMonitor
|
| 42 |
+
logging_interval: "step"
|
| 43 |
+
#audio_logging:
|
| 44 |
+
# _target_: remfx.callbacks.AudioCallback
|
| 45 |
+
# sample_rate: ${sample_rate}
|
| 46 |
+
# log_audio: ${log_audio}
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
trainer:
|
| 50 |
+
_target_: pytorch_lightning.Trainer
|
| 51 |
+
precision: 32 # Precision used for tensors, default `32`
|
| 52 |
+
min_epochs: 0
|
| 53 |
+
max_epochs: -1
|
| 54 |
+
log_every_n_steps: 1 # Logs metrics every N batches
|
| 55 |
+
accumulate_grad_batches: 1
|
| 56 |
+
accelerator: ${accelerator}
|
| 57 |
+
devices: 1
|
| 58 |
+
gradient_clip_val: 10.0
|
| 59 |
+
max_steps: 80000
|
cfg/model/cls_panns_16k.yaml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
model:
|
| 3 |
+
_target_: remfx.models.FXClassifier
|
| 4 |
+
lr: 3e-4
|
| 5 |
+
lr_weight_decay: 1e-3
|
| 6 |
+
sample_rate: ${sample_rate}
|
| 7 |
+
network:
|
| 8 |
+
_target_: remfx.classifier.Cnn14
|
| 9 |
+
num_classes: ${num_classes}
|
| 10 |
+
n_fft: 2048
|
| 11 |
+
hop_length: 512
|
| 12 |
+
n_mels: 128
|
| 13 |
+
sample_rate: 44100
|
| 14 |
+
model_sample_rate: 16000
|
| 15 |
+
|
cfg/model/cls_panns_44k.yaml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
model:
|
| 3 |
+
_target_: remfx.models.FXClassifier
|
| 4 |
+
lr: 3e-4
|
| 5 |
+
lr_weight_decay: 1e-3
|
| 6 |
+
sample_rate: ${sample_rate}
|
| 7 |
+
network:
|
| 8 |
+
_target_: remfx.classifier.Cnn14
|
| 9 |
+
num_classes: ${num_classes}
|
| 10 |
+
n_fft: 1024
|
| 11 |
+
hop_length: 256
|
| 12 |
+
n_mels: 128
|
| 13 |
+
sample_rate: 44100
|
| 14 |
+
model_sample_rate: 44100
|
| 15 |
+
specaugment: True
|
cfg/model/cls_panns_44k_noaug.yaml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
model:
|
| 3 |
+
_target_: remfx.models.FXClassifier
|
| 4 |
+
lr: 3e-4
|
| 5 |
+
lr_weight_decay: 1e-3
|
| 6 |
+
sample_rate: ${sample_rate}
|
| 7 |
+
network:
|
| 8 |
+
_target_: remfx.classifier.Cnn14
|
| 9 |
+
num_classes: ${num_classes}
|
| 10 |
+
n_fft: 1024
|
| 11 |
+
hop_length: 256
|
| 12 |
+
n_mels: 128
|
| 13 |
+
sample_rate: 44100
|
| 14 |
+
model_sample_rate: 44100
|
| 15 |
+
specaugment: False
|
cfg/model/{classifier.yaml → cls_panns_pt.yaml}
RENAMED
|
@@ -1,14 +1,11 @@
|
|
| 1 |
# @package _global_
|
| 2 |
model:
|
| 3 |
_target_: remfx.models.FXClassifier
|
| 4 |
-
lr:
|
| 5 |
lr_weight_decay: 1e-3
|
| 6 |
sample_rate: ${sample_rate}
|
| 7 |
network:
|
| 8 |
-
_target_: remfx.
|
| 9 |
num_classes: ${num_classes}
|
| 10 |
-
n_fft: 4096
|
| 11 |
-
hop_length: 512
|
| 12 |
-
n_mels: 128
|
| 13 |
sample_rate: ${sample_rate}
|
| 14 |
|
|
|
|
| 1 |
# @package _global_
|
| 2 |
model:
|
| 3 |
_target_: remfx.models.FXClassifier
|
| 4 |
+
lr: 3e-4
|
| 5 |
lr_weight_decay: 1e-3
|
| 6 |
sample_rate: ${sample_rate}
|
| 7 |
network:
|
| 8 |
+
_target_: remfx.classifier.PANNs
|
| 9 |
num_classes: ${num_classes}
|
|
|
|
|
|
|
|
|
|
| 10 |
sample_rate: ${sample_rate}
|
| 11 |
|
cfg/model/cls_vggish.yaml
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
model:
|
| 3 |
+
_target_: remfx.models.FXClassifier
|
| 4 |
+
lr: 3e-4
|
| 5 |
+
lr_weight_decay: 1e-3
|
| 6 |
+
sample_rate: ${sample_rate}
|
| 7 |
+
network:
|
| 8 |
+
_target_: remfx.classifier.VGGish
|
| 9 |
+
num_classes: ${num_classes}
|
| 10 |
+
sample_rate: ${sample_rate}
|
| 11 |
+
|
cfg/model/cls_wav2clip.yaml
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
model:
|
| 3 |
+
_target_: remfx.models.FXClassifier
|
| 4 |
+
lr: 3e-4
|
| 5 |
+
lr_weight_decay: 1e-3
|
| 6 |
+
sample_rate: ${sample_rate}
|
| 7 |
+
network:
|
| 8 |
+
_target_: remfx.classifier.Wav2CLIP
|
| 9 |
+
num_classes: ${num_classes}
|
| 10 |
+
sample_rate: ${sample_rate}
|
| 11 |
+
|
cfg/model/cls_wav2vec2.yaml
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
model:
|
| 3 |
+
_target_: remfx.models.FXClassifier
|
| 4 |
+
lr: 3e-4
|
| 5 |
+
lr_weight_decay: 1e-3
|
| 6 |
+
sample_rate: ${sample_rate}
|
| 7 |
+
network:
|
| 8 |
+
_target_: remfx.classifier.wav2vec2
|
| 9 |
+
num_classes: ${num_classes}
|
| 10 |
+
sample_rate: ${sample_rate}
|
| 11 |
+
|
remfx/{cnn14.py → classifier.py}
RENAMED
|
@@ -1,8 +1,132 @@
|
|
| 1 |
import torch
|
| 2 |
import torchaudio
|
| 3 |
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import torch.nn.functional as F
|
| 5 |
-
from utils import init_bn, init_layer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# adapted from https://github.com/qiuqiangkong/audioset_tagging_cnn/blob/master/pytorch/models.py
|
| 8 |
|
|
@@ -12,20 +136,25 @@ class Cnn14(nn.Module):
|
|
| 12 |
self,
|
| 13 |
num_classes: int,
|
| 14 |
sample_rate: float,
|
| 15 |
-
|
| 16 |
-
|
|
|
|
| 17 |
n_mels: int = 128,
|
|
|
|
| 18 |
):
|
| 19 |
super().__init__()
|
| 20 |
self.num_classes = num_classes
|
| 21 |
self.n_fft = n_fft
|
| 22 |
self.hop_length = hop_length
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
window = torch.hann_window(n_fft)
|
| 25 |
self.register_buffer("window", window)
|
| 26 |
|
| 27 |
self.melspec = torchaudio.transforms.MelSpectrogram(
|
| 28 |
-
|
| 29 |
n_fft,
|
| 30 |
hop_length=hop_length,
|
| 31 |
n_mels=n_mels,
|
|
@@ -45,42 +174,56 @@ class Cnn14(nn.Module):
|
|
| 45 |
|
| 46 |
self.init_weight()
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
def init_weight(self):
|
| 49 |
init_bn(self.bn0)
|
| 50 |
init_layer(self.fc1)
|
| 51 |
init_layer(self.fc_audioset)
|
| 52 |
|
| 53 |
-
def forward(self, x: torch.Tensor):
|
| 54 |
"""
|
| 55 |
Input: (batch_size, data_length)"""
|
| 56 |
|
|
|
|
|
|
|
|
|
|
| 57 |
x = self.melspec(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
x = x.permute(0, 2, 1, 3)
|
| 59 |
x = self.bn0(x)
|
| 60 |
x = x.permute(0, 2, 1, 3)
|
| 61 |
|
| 62 |
-
if self.training:
|
| 63 |
-
pass
|
| 64 |
-
# x = self.spec_augmenter(x)
|
| 65 |
-
|
| 66 |
x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg")
|
| 67 |
-
x = F.dropout(x, p=0.2, training=
|
| 68 |
x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg")
|
| 69 |
-
x = F.dropout(x, p=0.2, training=
|
| 70 |
x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg")
|
| 71 |
-
x = F.dropout(x, p=0.2, training=
|
| 72 |
x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg")
|
| 73 |
-
x = F.dropout(x, p=0.2, training=
|
| 74 |
x = self.conv_block5(x, pool_size=(2, 2), pool_type="avg")
|
| 75 |
-
x = F.dropout(x, p=0.2, training=
|
| 76 |
x = self.conv_block6(x, pool_size=(1, 1), pool_type="avg")
|
| 77 |
-
x = F.dropout(x, p=0.2, training=
|
| 78 |
x = torch.mean(x, dim=3)
|
| 79 |
|
| 80 |
(x1, _) = torch.max(x, dim=2)
|
| 81 |
x2 = torch.mean(x, dim=2)
|
| 82 |
x = x1 + x2
|
| 83 |
-
x = F.dropout(x, p=0.5, training=
|
| 84 |
x = F.relu_(self.fc1(x))
|
| 85 |
clipwise_output = self.fc_audioset(x)
|
| 86 |
|
|
|
|
| 1 |
import torch
|
| 2 |
import torchaudio
|
| 3 |
import torch.nn as nn
|
| 4 |
+
import hearbaseline
|
| 5 |
+
import hearbaseline.vggish
|
| 6 |
+
import hearbaseline.wav2vec2
|
| 7 |
+
|
| 8 |
+
import wav2clip_hear
|
| 9 |
+
import panns_hear
|
| 10 |
+
|
| 11 |
+
|
| 12 |
import torch.nn.functional as F
|
| 13 |
+
from remfx.utils import init_bn, init_layer
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class PANNs(torch.nn.Module):
|
| 17 |
+
def __init__(
|
| 18 |
+
self, num_classes: int, sample_rate: float, hidden_dim: int = 256
|
| 19 |
+
) -> None:
|
| 20 |
+
super().__init__()
|
| 21 |
+
self.num_classes = num_classes
|
| 22 |
+
self.model = panns_hear.load_model("hear2021-panns_hear.pth")
|
| 23 |
+
self.resample = torchaudio.transforms.Resample(
|
| 24 |
+
orig_freq=sample_rate, new_freq=32000
|
| 25 |
+
)
|
| 26 |
+
self.proj = torch.nn.Sequential(
|
| 27 |
+
torch.nn.Linear(2048, hidden_dim),
|
| 28 |
+
torch.nn.ReLU(),
|
| 29 |
+
torch.nn.Linear(hidden_dim, hidden_dim),
|
| 30 |
+
torch.nn.ReLU(),
|
| 31 |
+
torch.nn.Linear(hidden_dim, num_classes),
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
def forward(self, x: torch.Tensor):
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
x = self.resample(x)
|
| 37 |
+
embed = panns_hear.get_scene_embeddings(x.view(x.shape[0], -1), self.model)
|
| 38 |
+
return self.proj(embed)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class Wav2CLIP(nn.Module):
|
| 42 |
+
def __init__(
|
| 43 |
+
self,
|
| 44 |
+
num_classes: int,
|
| 45 |
+
sample_rate: float,
|
| 46 |
+
hidden_dim: int = 256,
|
| 47 |
+
) -> None:
|
| 48 |
+
super().__init__()
|
| 49 |
+
self.num_classes = num_classes
|
| 50 |
+
self.model = wav2clip_hear.load_model("")
|
| 51 |
+
self.resample = torchaudio.transforms.Resample(
|
| 52 |
+
orig_freq=sample_rate, new_freq=16000
|
| 53 |
+
)
|
| 54 |
+
self.proj = torch.nn.Sequential(
|
| 55 |
+
torch.nn.Linear(512, hidden_dim),
|
| 56 |
+
torch.nn.ReLU(),
|
| 57 |
+
torch.nn.Linear(hidden_dim, hidden_dim),
|
| 58 |
+
torch.nn.ReLU(),
|
| 59 |
+
torch.nn.Linear(hidden_dim, num_classes),
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
def forward(self, x: torch.Tensor):
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
x = self.resample(x)
|
| 65 |
+
embed = wav2clip_hear.get_scene_embeddings(
|
| 66 |
+
x.view(x.shape[0], -1), self.model
|
| 67 |
+
)
|
| 68 |
+
return self.proj(embed)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class VGGish(nn.Module):
|
| 72 |
+
def __init__(
|
| 73 |
+
self,
|
| 74 |
+
num_classes: int,
|
| 75 |
+
sample_rate: float,
|
| 76 |
+
hidden_dim: int = 256,
|
| 77 |
+
):
|
| 78 |
+
super().__init__()
|
| 79 |
+
self.num_classes = num_classes
|
| 80 |
+
self.resample = torchaudio.transforms.Resample(
|
| 81 |
+
orig_freq=sample_rate, new_freq=16000
|
| 82 |
+
)
|
| 83 |
+
self.model = hearbaseline.vggish.load_model()
|
| 84 |
+
self.proj = torch.nn.Sequential(
|
| 85 |
+
torch.nn.Linear(128, hidden_dim),
|
| 86 |
+
torch.nn.ReLU(),
|
| 87 |
+
torch.nn.Linear(hidden_dim, hidden_dim),
|
| 88 |
+
torch.nn.ReLU(),
|
| 89 |
+
torch.nn.Linear(hidden_dim, num_classes),
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
def forward(self, x: torch.Tensor):
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
x = self.resample(x)
|
| 95 |
+
embed = hearbaseline.vggish.get_scene_embeddings(
|
| 96 |
+
x.view(x.shape[0], -1), self.model
|
| 97 |
+
)
|
| 98 |
+
return self.proj(embed)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class wav2vec2(nn.Module):
|
| 102 |
+
def __init__(
|
| 103 |
+
self,
|
| 104 |
+
num_classes: int,
|
| 105 |
+
sample_rate: float,
|
| 106 |
+
hidden_dim: int = 256,
|
| 107 |
+
):
|
| 108 |
+
super().__init__()
|
| 109 |
+
self.num_classes = num_classes
|
| 110 |
+
self.resample = torchaudio.transforms.Resample(
|
| 111 |
+
orig_freq=sample_rate, new_freq=16000
|
| 112 |
+
)
|
| 113 |
+
self.model = hearbaseline.wav2vec2.load_model()
|
| 114 |
+
self.proj = torch.nn.Sequential(
|
| 115 |
+
torch.nn.Linear(1024, hidden_dim),
|
| 116 |
+
torch.nn.ReLU(),
|
| 117 |
+
torch.nn.Linear(hidden_dim, hidden_dim),
|
| 118 |
+
torch.nn.ReLU(),
|
| 119 |
+
torch.nn.Linear(hidden_dim, num_classes),
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
def forward(self, x: torch.Tensor):
|
| 123 |
+
with torch.no_grad():
|
| 124 |
+
x = self.resample(x)
|
| 125 |
+
embed = hearbaseline.wav2vec2.get_scene_embeddings(
|
| 126 |
+
x.view(x.shape[0], -1), self.model
|
| 127 |
+
)
|
| 128 |
+
return self.proj(embed)
|
| 129 |
+
|
| 130 |
|
| 131 |
# adapted from https://github.com/qiuqiangkong/audioset_tagging_cnn/blob/master/pytorch/models.py
|
| 132 |
|
|
|
|
| 136 |
self,
|
| 137 |
num_classes: int,
|
| 138 |
sample_rate: float,
|
| 139 |
+
model_sample_rate: float,
|
| 140 |
+
n_fft: int = 1024,
|
| 141 |
+
hop_length: int = 256,
|
| 142 |
n_mels: int = 128,
|
| 143 |
+
specaugment: bool = False,
|
| 144 |
):
|
| 145 |
super().__init__()
|
| 146 |
self.num_classes = num_classes
|
| 147 |
self.n_fft = n_fft
|
| 148 |
self.hop_length = hop_length
|
| 149 |
+
self.sample_rate = sample_rate
|
| 150 |
+
self.model_sample_rate = model_sample_rate
|
| 151 |
+
self.specaugment = specaugment
|
| 152 |
|
| 153 |
window = torch.hann_window(n_fft)
|
| 154 |
self.register_buffer("window", window)
|
| 155 |
|
| 156 |
self.melspec = torchaudio.transforms.MelSpectrogram(
|
| 157 |
+
model_sample_rate,
|
| 158 |
n_fft,
|
| 159 |
hop_length=hop_length,
|
| 160 |
n_mels=n_mels,
|
|
|
|
| 174 |
|
| 175 |
self.init_weight()
|
| 176 |
|
| 177 |
+
if sample_rate != model_sample_rate:
|
| 178 |
+
self.resample = torchaudio.transforms.Resample(
|
| 179 |
+
orig_freq=sample_rate, new_freq=model_sample_rate
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
def init_weight(self):
|
| 183 |
init_bn(self.bn0)
|
| 184 |
init_layer(self.fc1)
|
| 185 |
init_layer(self.fc_audioset)
|
| 186 |
|
| 187 |
+
def forward(self, x: torch.Tensor, train: bool = False):
|
| 188 |
"""
|
| 189 |
Input: (batch_size, data_length)"""
|
| 190 |
|
| 191 |
+
if self.sample_rate != self.model_sample_rate:
|
| 192 |
+
x = self.resample(x)
|
| 193 |
+
|
| 194 |
x = self.melspec(x)
|
| 195 |
+
|
| 196 |
+
if self.specaugment and train:
|
| 197 |
+
# import matplotlib.pyplot as plt
|
| 198 |
+
# fig, axs = plt.subplots(2, 1, sharex=True)
|
| 199 |
+
# axs[0].imshow(x[0, :, :, :].detach().squeeze().cpu().numpy())
|
| 200 |
+
x = self.freq_mask(x)
|
| 201 |
+
x = self.time_mask(x)
|
| 202 |
+
# axs[1].imshow(x[0, :, :, :].detach().squeeze().cpu().numpy())
|
| 203 |
+
# plt.savefig("spec_augment.png", dpi=300)
|
| 204 |
+
|
| 205 |
x = x.permute(0, 2, 1, 3)
|
| 206 |
x = self.bn0(x)
|
| 207 |
x = x.permute(0, 2, 1, 3)
|
| 208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
x = self.conv_block1(x, pool_size=(2, 2), pool_type="avg")
|
| 210 |
+
x = F.dropout(x, p=0.2, training=train)
|
| 211 |
x = self.conv_block2(x, pool_size=(2, 2), pool_type="avg")
|
| 212 |
+
x = F.dropout(x, p=0.2, training=train)
|
| 213 |
x = self.conv_block3(x, pool_size=(2, 2), pool_type="avg")
|
| 214 |
+
x = F.dropout(x, p=0.2, training=train)
|
| 215 |
x = self.conv_block4(x, pool_size=(2, 2), pool_type="avg")
|
| 216 |
+
x = F.dropout(x, p=0.2, training=train)
|
| 217 |
x = self.conv_block5(x, pool_size=(2, 2), pool_type="avg")
|
| 218 |
+
x = F.dropout(x, p=0.2, training=train)
|
| 219 |
x = self.conv_block6(x, pool_size=(1, 1), pool_type="avg")
|
| 220 |
+
x = F.dropout(x, p=0.2, training=train)
|
| 221 |
x = torch.mean(x, dim=3)
|
| 222 |
|
| 223 |
(x1, _) = torch.max(x, dim=2)
|
| 224 |
x2 = torch.mean(x, dim=2)
|
| 225 |
x = x1 + x2
|
| 226 |
+
x = F.dropout(x, p=0.5, training=train)
|
| 227 |
x = F.relu_(self.fc1(x))
|
| 228 |
clipwise_output = self.fc_audioset(x)
|
| 229 |
|
remfx/models.py
CHANGED
|
@@ -422,14 +422,32 @@ class FXClassifier(pl.LightningModule):
|
|
| 422 |
self.lr_weight_decay = lr_weight_decay
|
| 423 |
self.sample_rate = sample_rate
|
| 424 |
self.network = network
|
|
|
|
| 425 |
|
| 426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
return self.network(x)
|
| 428 |
|
| 429 |
def common_step(self, batch, batch_idx, mode: str = "train"):
|
|
|
|
| 430 |
x, y, dry_label, wet_label = batch
|
| 431 |
-
pred_label = self
|
| 432 |
-
loss = nn.functional.cross_entropy(pred_label,
|
| 433 |
self.log(
|
| 434 |
f"{mode}_loss",
|
| 435 |
loss,
|
|
@@ -440,11 +458,12 @@ class FXClassifier(pl.LightningModule):
|
|
| 440 |
sync_dist=True,
|
| 441 |
)
|
| 442 |
|
|
|
|
|
|
|
|
|
|
| 443 |
self.log(
|
| 444 |
-
f"{mode}
|
| 445 |
-
|
| 446 |
-
pred_label, dry_label.long()
|
| 447 |
-
),
|
| 448 |
on_step=True,
|
| 449 |
on_epoch=True,
|
| 450 |
prog_bar=True,
|
|
@@ -452,6 +471,17 @@ class FXClassifier(pl.LightningModule):
|
|
| 452 |
sync_dist=True,
|
| 453 |
)
|
| 454 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 455 |
return loss
|
| 456 |
|
| 457 |
def training_step(self, batch, batch_idx):
|
|
|
|
| 422 |
self.lr_weight_decay = lr_weight_decay
|
| 423 |
self.sample_rate = sample_rate
|
| 424 |
self.network = network
|
| 425 |
+
self.effects = ["distortion", "compressor", "reverb", "chorus", "delay"]
|
| 426 |
|
| 427 |
+
self.train_f1 = torchmetrics.classification.MultilabelF1Score(
|
| 428 |
+
5, average="none", multidim_average="global"
|
| 429 |
+
)
|
| 430 |
+
self.val_f1 = torchmetrics.classification.MultilabelF1Score(
|
| 431 |
+
5, average="none", multidim_average="global"
|
| 432 |
+
)
|
| 433 |
+
self.test_f1 = torchmetrics.classification.MultilabelF1Score(
|
| 434 |
+
5, average="none", multidim_average="global"
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
self.metrics = {
|
| 438 |
+
"train": self.train_f1,
|
| 439 |
+
"valid": self.val_f1,
|
| 440 |
+
"test": self.test_f1,
|
| 441 |
+
}
|
| 442 |
+
|
| 443 |
+
def forward(self, x: torch.Tensor, train: bool = False):
|
| 444 |
return self.network(x)
|
| 445 |
|
| 446 |
def common_step(self, batch, batch_idx, mode: str = "train"):
|
| 447 |
+
train = True if mode == "train" else False
|
| 448 |
x, y, dry_label, wet_label = batch
|
| 449 |
+
pred_label = self(x, train)
|
| 450 |
+
loss = nn.functional.cross_entropy(pred_label, wet_label)
|
| 451 |
self.log(
|
| 452 |
f"{mode}_loss",
|
| 453 |
loss,
|
|
|
|
| 458 |
sync_dist=True,
|
| 459 |
)
|
| 460 |
|
| 461 |
+
metrics = self.metrics[mode](pred_label, wet_label.long())
|
| 462 |
+
avg_metrics = torch.mean(metrics)
|
| 463 |
+
|
| 464 |
self.log(
|
| 465 |
+
f"{mode}_f1_avg",
|
| 466 |
+
avg_metrics,
|
|
|
|
|
|
|
| 467 |
on_step=True,
|
| 468 |
on_epoch=True,
|
| 469 |
prog_bar=True,
|
|
|
|
| 471 |
sync_dist=True,
|
| 472 |
)
|
| 473 |
|
| 474 |
+
for idx, effect_name in enumerate(self.effects):
|
| 475 |
+
self.log(
|
| 476 |
+
f"{mode}_f1_{effect_name}",
|
| 477 |
+
metrics[idx],
|
| 478 |
+
on_step=True,
|
| 479 |
+
on_epoch=True,
|
| 480 |
+
prog_bar=True,
|
| 481 |
+
logger=True,
|
| 482 |
+
sync_dist=True,
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
return loss
|
| 486 |
|
| 487 |
def training_step(self, batch, batch_idx):
|
setup.py
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
from pathlib import Path
|
| 2 |
from setuptools import setup, find_packages
|
| 3 |
|
| 4 |
-
NAME = "
|
| 5 |
-
DESCRIPTION = ""
|
| 6 |
URL = ""
|
| 7 |
EMAIL = "[email protected]"
|
| 8 |
AUTHOR = "Matthew Rice"
|
|
|
|
| 1 |
from pathlib import Path
|
| 2 |
from setuptools import setup, find_packages
|
| 3 |
|
| 4 |
+
NAME = "remfx"
|
| 5 |
+
DESCRIPTION = "Universal audio effect removal"
|
| 6 |
URL = ""
|
| 7 |
EMAIL = "[email protected]"
|
| 8 |
AUTHOR = "Matthew Rice"
|
train_all.sh
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python scripts/train.py +exp=5-5_cls.yaml model=cls_wav2vec2 render_files=False logs_dir=/scratch/cjs-log
|
| 2 |
+
python scripts/train.py +exp=5-5_cls.yaml model=cls_panns_44k render_files=False logs_dir=/scratch/cjs-log
|
| 3 |
+
python scripts/train.py +exp=5-5_cls.yaml model=cls_panns_16k render_files=False logs_dir=/scratch/cjs-log
|
| 4 |
+
python scripts/train.py +exp=5-5_cls.yaml model=cls_panns_pt render_files=False logs_dir=/scratch/cjs-log
|
| 5 |
+
python scripts/train.py +exp=5-5_cls.yaml model=cls_vggish render_files=False logs_dir=/scratch/cjs-log
|
| 6 |
+
python scripts/train.py +exp=5-5_cls.yaml model=cls_wav2clip render_files=False logs_dir=/scratch/cjs-log
|