Spaces:
Sleeping
Sleeping
Christian J. Steinmetz
commited on
Commit
·
c756b1d
1
Parent(s):
d254115
changing linear layers to MLP
Browse files- README.md +27 -1
- cfg/exp/5-5_cls.yaml +1 -1
- cfg/model/cls_panns_44k_noaug.yaml +15 -0
- remfx/models.py +37 -7
README.md
CHANGED
|
@@ -77,4 +77,30 @@ python scripts/download.py vocalset guitarset idmt-smt-guitar idmt-smt-bass idmt
|
|
| 77 |
To run audio effects classifiction:
|
| 78 |
```
|
| 79 |
python scripts/train.py model=classifier "effects_to_use=[compressor, distortion, reverb, chorus, delay]" "effects_to_remove=[]" max_kept_effects=5 max_removed_effects=0 shuffle_kept_effects=True shuffle_removed_effects=True accelerator='gpu' render_root=/scratch/RemFX render_files=True
|
| 80 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
To run audio effects classifiction:
|
| 78 |
```
|
| 79 |
python scripts/train.py model=classifier "effects_to_use=[compressor, distortion, reverb, chorus, delay]" "effects_to_remove=[]" max_kept_effects=5 max_removed_effects=0 shuffle_kept_effects=True shuffle_removed_effects=True accelerator='gpu' render_root=/scratch/RemFX render_files=True
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
```
|
| 83 |
+
srun --comment harmonai --partition=g40 --gpus=1 --cpus-per-gpu=12 --job-name=harmonai --pty bash -i
|
| 84 |
+
source env/bin/activate
|
| 85 |
+
rsync -aP /fsx/home-csteinmetz1/data/EffectSet_cjs.tar /scratch
|
| 86 |
+
tar -xvf EffectSet_cjs.tar
|
| 87 |
+
mv scratch/EffectSet_cjs ./EffectSet_cjs
|
| 88 |
+
|
| 89 |
+
export DATASET_ROOT="/admin/home-csteinmetz1/data/remfx-data"
|
| 90 |
+
export WANDB_PROJECT="RemFX"
|
| 91 |
+
export WANDB_ENTITY="cjstein"
|
| 92 |
+
|
| 93 |
+
python scripts/train.py +exp=5-5.yaml model=cls_vggish render_files=False logs_dir=/scratch/cjs-log datamodule.batch_size=64
|
| 94 |
+
python scripts/train.py +exp=5-5.yaml model=cls_panns_pt render_files=False logs_dir=/scratch/cjs-log datamodule.batch_size=64
|
| 95 |
+
python scripts/train.py +exp=5-5.yaml model=cls_wav2vec2 render_files=False logs_dir=/scratch/cjs-log datamodule.batch_size=64
|
| 96 |
+
python scripts/train.py +exp=5-5.yaml model=cls_wav2clip render_files=False logs_dir=/scratch/cjs-log datamodule.batch_size=64
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
### Installing HEAR models
|
| 100 |
+
|
| 101 |
+
wav2clip
|
| 102 |
+
```
|
| 103 |
+
pip install hearbaseline
|
| 104 |
+
pip install git+https://github.com/hohsiangwu/wav2clip-hear.git
|
| 105 |
+
pip install git+https://github.com/qiuqiangkong/HEAR2021_Challenge_PANNs
|
| 106 |
+
wget https://zenodo.org/record/6332525/files/hear2021-panns_hear.pth
|
cfg/exp/5-5_cls.yaml
CHANGED
|
@@ -56,4 +56,4 @@ trainer:
|
|
| 56 |
accelerator: ${accelerator}
|
| 57 |
devices: 1
|
| 58 |
gradient_clip_val: 10.0
|
| 59 |
-
max_steps:
|
|
|
|
| 56 |
accelerator: ${accelerator}
|
| 57 |
devices: 1
|
| 58 |
gradient_clip_val: 10.0
|
| 59 |
+
max_steps: 80000
|
cfg/model/cls_panns_44k_noaug.yaml
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
model:
|
| 3 |
+
_target_: remfx.models.FXClassifier
|
| 4 |
+
lr: 3e-4
|
| 5 |
+
lr_weight_decay: 1e-3
|
| 6 |
+
sample_rate: ${sample_rate}
|
| 7 |
+
network:
|
| 8 |
+
_target_: remfx.classifier.Cnn14
|
| 9 |
+
num_classes: ${num_classes}
|
| 10 |
+
n_fft: 1024
|
| 11 |
+
hop_length: 256
|
| 12 |
+
n_mels: 128
|
| 13 |
+
sample_rate: 44100
|
| 14 |
+
model_sample_rate: 44100
|
| 15 |
+
specaugment: False
|
remfx/models.py
CHANGED
|
@@ -422,14 +422,32 @@ class FXClassifier(pl.LightningModule):
|
|
| 422 |
self.lr_weight_decay = lr_weight_decay
|
| 423 |
self.sample_rate = sample_rate
|
| 424 |
self.network = network
|
|
|
|
| 425 |
|
| 426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
return self.network(x)
|
| 428 |
|
| 429 |
def common_step(self, batch, batch_idx, mode: str = "train"):
|
|
|
|
| 430 |
x, y, dry_label, wet_label = batch
|
| 431 |
-
pred_label = self
|
| 432 |
-
loss = nn.functional.cross_entropy(pred_label,
|
| 433 |
self.log(
|
| 434 |
f"{mode}_loss",
|
| 435 |
loss,
|
|
@@ -440,11 +458,12 @@ class FXClassifier(pl.LightningModule):
|
|
| 440 |
sync_dist=True,
|
| 441 |
)
|
| 442 |
|
|
|
|
|
|
|
|
|
|
| 443 |
self.log(
|
| 444 |
-
f"{mode}
|
| 445 |
-
|
| 446 |
-
pred_label, dry_label.long()
|
| 447 |
-
),
|
| 448 |
on_step=True,
|
| 449 |
on_epoch=True,
|
| 450 |
prog_bar=True,
|
|
@@ -452,6 +471,17 @@ class FXClassifier(pl.LightningModule):
|
|
| 452 |
sync_dist=True,
|
| 453 |
)
|
| 454 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 455 |
return loss
|
| 456 |
|
| 457 |
def training_step(self, batch, batch_idx):
|
|
|
|
| 422 |
self.lr_weight_decay = lr_weight_decay
|
| 423 |
self.sample_rate = sample_rate
|
| 424 |
self.network = network
|
| 425 |
+
self.effects = ["distortion", "compressor", "reverb", "chorus", "delay"]
|
| 426 |
|
| 427 |
+
self.train_f1 = torchmetrics.classification.MultilabelF1Score(
|
| 428 |
+
5, average="none", multidim_average="global"
|
| 429 |
+
)
|
| 430 |
+
self.val_f1 = torchmetrics.classification.MultilabelF1Score(
|
| 431 |
+
5, average="none", multidim_average="global"
|
| 432 |
+
)
|
| 433 |
+
self.test_f1 = torchmetrics.classification.MultilabelF1Score(
|
| 434 |
+
5, average="none", multidim_average="global"
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
self.metrics = {
|
| 438 |
+
"train": self.train_f1,
|
| 439 |
+
"valid": self.val_f1,
|
| 440 |
+
"test": self.test_f1,
|
| 441 |
+
}
|
| 442 |
+
|
| 443 |
+
def forward(self, x: torch.Tensor, train: bool = False):
|
| 444 |
return self.network(x)
|
| 445 |
|
| 446 |
def common_step(self, batch, batch_idx, mode: str = "train"):
|
| 447 |
+
train = True if mode == "train" else False
|
| 448 |
x, y, dry_label, wet_label = batch
|
| 449 |
+
pred_label = self(x, train)
|
| 450 |
+
loss = nn.functional.cross_entropy(pred_label, wet_label)
|
| 451 |
self.log(
|
| 452 |
f"{mode}_loss",
|
| 453 |
loss,
|
|
|
|
| 458 |
sync_dist=True,
|
| 459 |
)
|
| 460 |
|
| 461 |
+
metrics = self.metrics[mode](pred_label, wet_label.long())
|
| 462 |
+
avg_metrics = torch.mean(metrics)
|
| 463 |
+
|
| 464 |
self.log(
|
| 465 |
+
f"{mode}_f1_avg",
|
| 466 |
+
avg_metrics,
|
|
|
|
|
|
|
| 467 |
on_step=True,
|
| 468 |
on_epoch=True,
|
| 469 |
prog_bar=True,
|
|
|
|
| 471 |
sync_dist=True,
|
| 472 |
)
|
| 473 |
|
| 474 |
+
for idx, effect_name in enumerate(self.effects):
|
| 475 |
+
self.log(
|
| 476 |
+
f"{mode}_f1_{effect_name}",
|
| 477 |
+
metrics[idx],
|
| 478 |
+
on_step=True,
|
| 479 |
+
on_epoch=True,
|
| 480 |
+
prog_bar=True,
|
| 481 |
+
logger=True,
|
| 482 |
+
sync_dist=True,
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
return loss
|
| 486 |
|
| 487 |
def training_step(self, batch, batch_idx):
|