Spaces:
Sleeping
Sleeping
import torch | |
from torch.utils.data import Dataset, DataLoader | |
import torch.nn.functional as F | |
import torchaudio | |
from pathlib import Path | |
import pytorch_lightning as pl | |
import sys | |
from typing import Any, Dict | |
from remfx import effects | |
from tqdm import tqdm | |
from remfx.utils import create_sequential_chunks | |
import shutil | |
# https://zenodo.org/record/1193957 -> VocalSet | |
ALL_EFFECTS = effects.Pedalboard_Effects | |
class VocalSet(Dataset): | |
def __init__( | |
self, | |
root: str, | |
sample_rate: int, | |
chunk_size: int = 3, | |
applied_effects: Dict[str, torch.nn.Module] = None, | |
effect_to_remove: Dict[str, torch.nn.Module] = None, | |
max_effects_per_file: int = 1, | |
render_files: bool = True, | |
render_root: str = None, | |
mode: str = "train", | |
): | |
super().__init__() | |
self.chunks = [] | |
self.song_idx = [] | |
self.root = Path(root) | |
self.render_root = Path(render_root) | |
self.chunk_size = chunk_size | |
self.sample_rate = sample_rate | |
self.mode = mode | |
self.max_effects_per_file = max_effects_per_file | |
self.effect_to_remove = effect_to_remove | |
mode_path = self.root / self.mode | |
self.files = sorted(list(mode_path.glob("./**/*.wav"))) | |
self.normalize = effects.LoudnessNormalize(sample_rate, target_lufs_db=-20) | |
self.applied_effects = applied_effects | |
self.effect_to_remove_name = list(effect_to_remove.keys())[0] | |
effect_str = "_".join([e for e in self.applied_effects]) | |
effect_str += f"_{self.effect_to_remove_name}" | |
self.proc_root = self.render_root / "processed" / effect_str / self.mode | |
if self.proc_root.exists() and len(list(self.proc_root.iterdir())) > 0: | |
print("Found processed files.") | |
if render_files: | |
re_render = input( | |
"WARNING: By default, will re-render files.\n" | |
"Set render_files=False to skip re-rendering.\n" | |
"Are you sure you want to re-render? (y/n): " | |
) | |
if re_render != "y": | |
sys.exit() | |
shutil.rmtree(self.proc_root) | |
self.num_chunks = 0 | |
print("Total files:", len(self.files)) | |
print("Processing files...") | |
if render_files: | |
# Split audio file into chunks, resample, then apply random effects | |
self.proc_root.mkdir(parents=True, exist_ok=True) | |
for audio_file in tqdm(self.files, total=len(self.files)): | |
chunks, orig_sr = create_sequential_chunks(audio_file, self.chunk_size) | |
for chunk in chunks: | |
resampled_chunk = torchaudio.functional.resample( | |
chunk, orig_sr, sample_rate | |
) | |
if resampled_chunk.shape[-1] < chunk_size: | |
# Skip if chunk is too small | |
continue | |
x, y, effect = self.process_effects(resampled_chunk) | |
output_dir = self.proc_root / str(self.num_chunks) | |
output_dir.mkdir(exist_ok=True) | |
torchaudio.save(output_dir / "input.wav", x, self.sample_rate) | |
torchaudio.save(output_dir / "target.wav", y, self.sample_rate) | |
torch.save(effect, output_dir / "effect.pt") | |
self.num_chunks += 1 | |
else: | |
self.num_chunks = len(list(self.proc_root.iterdir())) | |
print( | |
f"Found {len(self.files)} {self.mode} files .\n" | |
f"Total chunks: {self.num_chunks}" | |
) | |
def __len__(self): | |
return self.num_chunks | |
def __getitem__(self, idx): | |
input_file = self.proc_root / str(idx) / "input.wav" | |
target_file = self.proc_root / str(idx) / "target.wav" | |
effect_name = torch.load(self.proc_root / str(idx) / "effect.pt") | |
input, sr = torchaudio.load(input_file) | |
target, sr = torchaudio.load(target_file) | |
return (input, target, effect_name) | |
def process_effects(self, dry: torch.Tensor): | |
# Apply random number of effects up to num_effects - 1 (excluding effect_to_remove) | |
if self.max_effects_per_file > 1: | |
num_effects = torch.randint(self.max_effects_per_file - 1, (1,)).item() | |
# Remove effect to remove from applied effects if present | |
self.applied_effects.pop(self.effect_to_remove_name, None) | |
# Choose random effects to apply | |
effect_indices = torch.randperm(len(self.applied_effects.keys()))[ | |
:num_effects | |
] | |
effects_to_apply = [ | |
list(self.applied_effects.keys())[i] for i in effect_indices | |
] | |
labels = [] | |
for effect_name in effects_to_apply: | |
effect = self.applied_effects[effect_name] | |
dry = effect(dry) | |
labels.append(ALL_EFFECTS.index(type(effect))) | |
# Apply effect_to_remove | |
effect = self.effect_to_remove[self.effect_to_remove_name] | |
wet = effect(torch.clone(dry)) | |
labels.append(ALL_EFFECTS.index(type(effect))) | |
# Convert labels to one-hot | |
one_hot = F.one_hot(torch.tensor(labels), num_classes=len(ALL_EFFECTS)) | |
effects_present = torch.sum(one_hot, dim=0).float() | |
# Normalize | |
normalized_dry = self.normalize(dry) | |
normalized_wet = self.normalize(wet) | |
return normalized_dry, normalized_wet, effects_present | |
class VocalSetDatamodule(pl.LightningDataModule): | |
def __init__( | |
self, | |
train_dataset, | |
val_dataset, | |
test_dataset, | |
*, | |
batch_size: int, | |
num_workers: int, | |
pin_memory: bool = False, | |
**kwargs: int, | |
) -> None: | |
super().__init__() | |
self.train_dataset = train_dataset | |
self.val_dataset = val_dataset | |
self.test_dataset = test_dataset | |
self.batch_size = batch_size | |
self.num_workers = num_workers | |
self.pin_memory = pin_memory | |
def setup(self, stage: Any = None) -> None: | |
pass | |
def train_dataloader(self) -> DataLoader: | |
return DataLoader( | |
dataset=self.train_dataset, | |
batch_size=self.batch_size, | |
num_workers=self.num_workers, | |
pin_memory=self.pin_memory, | |
shuffle=True, | |
) | |
def val_dataloader(self) -> DataLoader: | |
return DataLoader( | |
dataset=self.val_dataset, | |
batch_size=self.batch_size, | |
num_workers=self.num_workers, | |
pin_memory=self.pin_memory, | |
shuffle=False, | |
) | |
def test_dataloader(self) -> DataLoader: | |
return DataLoader( | |
dataset=self.test_dataset, | |
batch_size=self.batch_size, | |
num_workers=self.num_workers, | |
pin_memory=self.pin_memory, | |
shuffle=False, | |
) | |