File size: 6,980 Bytes
7d6db8f
8125531
14ae0ea
c7866f1
14ae0ea
a89496d
c7866f1
 
d9f47ef
7173e65
8125531
c7866f1
14ae0ea
e0a5f6f
14ae0ea
c7866f1
 
b175ee9
e0a5f6f
 
 
 
 
d8d3e30
c7866f1
 
 
7173e65
6990e4a
e0a5f6f
 
 
 
 
 
6990e4a
d8d3e30
e0a5f6f
 
c7866f1
 
e0a5f6f
 
 
c7866f1
 
 
 
 
 
 
 
57c446b
c7866f1
 
 
 
 
 
 
 
 
 
7173e65
 
 
 
8125531
c7866f1
8125531
d8d3e30
7173e65
 
 
 
d8d3e30
4a7a6b8
 
c7866f1
 
 
7173e65
c7866f1
 
 
7173e65
e0a5f6f
c7866f1
7bb4fe3
7173e65
 
 
 
 
 
 
 
 
c7866f1
 
 
7173e65
 
8125531
e0a5f6f
c7866f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0a5f6f
 
 
 
 
 
8125531
e0a5f6f
 
 
 
 
 
 
 
 
8125531
e0a5f6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8125531
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
import torchaudio
from pathlib import Path
import pytorch_lightning as pl
import sys
from typing import Any, Dict
from remfx import effects
from tqdm import tqdm
from remfx.utils import create_sequential_chunks
import shutil

# https://zenodo.org/record/1193957 -> VocalSet

ALL_EFFECTS = effects.Pedalboard_Effects


class VocalSet(Dataset):
    def __init__(
        self,
        root: str,
        sample_rate: int,
        chunk_size: int = 3,
        applied_effects: Dict[str, torch.nn.Module] = None,
        effect_to_remove: Dict[str, torch.nn.Module] = None,
        max_effects_per_file: int = 1,
        render_files: bool = True,
        render_root: str = None,
        mode: str = "train",
    ):
        super().__init__()
        self.chunks = []
        self.song_idx = []
        self.root = Path(root)
        self.render_root = Path(render_root)
        self.chunk_size = chunk_size
        self.sample_rate = sample_rate
        self.mode = mode
        self.max_effects_per_file = max_effects_per_file
        self.effect_to_remove = effect_to_remove
        mode_path = self.root / self.mode
        self.files = sorted(list(mode_path.glob("./**/*.wav")))
        self.normalize = effects.LoudnessNormalize(sample_rate, target_lufs_db=-20)
        self.applied_effects = applied_effects
        self.effect_to_remove_name = list(effect_to_remove.keys())[0]

        effect_str = "_".join([e for e in self.applied_effects])
        effect_str += f"_{self.effect_to_remove_name}"
        self.proc_root = self.render_root / "processed" / effect_str / self.mode

        if self.proc_root.exists() and len(list(self.proc_root.iterdir())) > 0:
            print("Found processed files.")
            if render_files:
                re_render = input(
                    "WARNING: By default, will re-render files.\n"
                    "Set render_files=False to skip re-rendering.\n"
                    "Are you sure you want to re-render? (y/n): "
                )
                if re_render != "y":
                    sys.exit()
                shutil.rmtree(self.proc_root)

        self.num_chunks = 0
        print("Total files:", len(self.files))
        print("Processing files...")
        if render_files:
            # Split audio file into chunks, resample, then apply random effects
            self.proc_root.mkdir(parents=True, exist_ok=True)
            for audio_file in tqdm(self.files, total=len(self.files)):
                chunks, orig_sr = create_sequential_chunks(audio_file, self.chunk_size)
                for chunk in chunks:
                    resampled_chunk = torchaudio.functional.resample(
                        chunk, orig_sr, sample_rate
                    )
                    if resampled_chunk.shape[-1] < chunk_size:
                        # Skip if chunk is too small
                        continue

                    x, y, effect = self.process_effects(resampled_chunk)
                    output_dir = self.proc_root / str(self.num_chunks)
                    output_dir.mkdir(exist_ok=True)
                    torchaudio.save(output_dir / "input.wav", x, self.sample_rate)
                    torchaudio.save(output_dir / "target.wav", y, self.sample_rate)
                    torch.save(effect, output_dir / "effect.pt")
                    self.num_chunks += 1
        else:
            self.num_chunks = len(list(self.proc_root.iterdir()))

        print(
            f"Found {len(self.files)} {self.mode} files .\n"
            f"Total chunks: {self.num_chunks}"
        )

    def __len__(self):
        return self.num_chunks

    def __getitem__(self, idx):
        input_file = self.proc_root / str(idx) / "input.wav"
        target_file = self.proc_root / str(idx) / "target.wav"
        effect_name = torch.load(self.proc_root / str(idx) / "effect.pt")
        input, sr = torchaudio.load(input_file)
        target, sr = torchaudio.load(target_file)
        return (input, target, effect_name)

    def process_effects(self, dry: torch.Tensor):
        # Apply random number of effects up to num_effects - 1 (excluding effect_to_remove)
        if self.max_effects_per_file > 1:
            num_effects = torch.randint(self.max_effects_per_file - 1, (1,)).item()
            # Remove effect to remove from applied effects if present
            self.applied_effects.pop(self.effect_to_remove_name, None)

            # Choose random effects to apply
            effect_indices = torch.randperm(len(self.applied_effects.keys()))[
                :num_effects
            ]
            effects_to_apply = [
                list(self.applied_effects.keys())[i] for i in effect_indices
            ]
            labels = []
            for effect_name in effects_to_apply:
                effect = self.applied_effects[effect_name]
                dry = effect(dry)
                labels.append(ALL_EFFECTS.index(type(effect)))

        # Apply effect_to_remove
        effect = self.effect_to_remove[self.effect_to_remove_name]
        wet = effect(torch.clone(dry))
        labels.append(ALL_EFFECTS.index(type(effect)))

        # Convert labels to one-hot
        one_hot = F.one_hot(torch.tensor(labels), num_classes=len(ALL_EFFECTS))
        effects_present = torch.sum(one_hot, dim=0).float()

        # Normalize
        normalized_dry = self.normalize(dry)
        normalized_wet = self.normalize(wet)
        return normalized_dry, normalized_wet, effects_present


class VocalSetDatamodule(pl.LightningDataModule):
    def __init__(
        self,
        train_dataset,
        val_dataset,
        test_dataset,
        *,
        batch_size: int,
        num_workers: int,
        pin_memory: bool = False,
        **kwargs: int,
    ) -> None:
        super().__init__()
        self.train_dataset = train_dataset
        self.val_dataset = val_dataset
        self.test_dataset = test_dataset
        self.batch_size = batch_size
        self.num_workers = num_workers
        self.pin_memory = pin_memory

    def setup(self, stage: Any = None) -> None:
        pass

    def train_dataloader(self) -> DataLoader:
        return DataLoader(
            dataset=self.train_dataset,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
            shuffle=True,
        )

    def val_dataloader(self) -> DataLoader:
        return DataLoader(
            dataset=self.val_dataset,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
            shuffle=False,
        )

    def test_dataloader(self) -> DataLoader:
        return DataLoader(
            dataset=self.test_dataset,
            batch_size=self.batch_size,
            num_workers=self.num_workers,
            pin_memory=self.pin_memory,
            shuffle=False,
        )