Spaces:
Sleeping
Sleeping
File size: 1,933 Bytes
76b753e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import gradio as gr
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import torch
# Load model and processor from the Hugging Face Hub
model_name = "prithivMLmods/Bone-Fracture-Detection"
model = AutoModelForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
def detect_fracture(image):
"""
Takes a NumPy image array, processes it, and returns the model's prediction.
"""
# Convert NumPy array to a PIL Image
image = Image.fromarray(image).convert("RGB")
# Process the image and prepare it as input for the model
inputs = processor(images=image, return_tensors="pt")
# Perform inference without calculating gradients
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Apply softmax to get probabilities and convert to a list
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
# Create a dictionary of labels and their corresponding probabilities
# This now correctly uses the labels from the model's configuration
prediction = {model.config.id2label[i]: round(probs[i], 3) for i in range(len(probs))}
return prediction
# Create the Gradio Interface
iface = gr.Interface(
fn=detect_fracture,
inputs=gr.Image(type="numpy", label="Upload Bone X-ray"),
outputs=gr.Label(num_top_classes=2, label="Detection Result"),
title="🔬 Bone Fracture Detection",
description="Upload a bone X-ray image to detect if there is a fracture. The model will return the probability for 'Fractured' and 'Not Fractured'.",
examples=[
["fractured_example.png"],
["not_fractured_example.png"]
] # Note: You would need to have these image files in the same directory for the examples to work.
)
# Launch the app
if __name__ == "__main__":
iface.launch()
|