3dredstone commited on
Commit
76b753e
·
verified ·
1 Parent(s): 445c35c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -0
app.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoImageProcessor, AutoModelForImageClassification
3
+ from PIL import Image
4
+ import torch
5
+
6
+ # Load model and processor from the Hugging Face Hub
7
+ model_name = "prithivMLmods/Bone-Fracture-Detection"
8
+ model = AutoModelForImageClassification.from_pretrained(model_name)
9
+ processor = AutoImageProcessor.from_pretrained(model_name)
10
+
11
+ def detect_fracture(image):
12
+ """
13
+ Takes a NumPy image array, processes it, and returns the model's prediction.
14
+ """
15
+ # Convert NumPy array to a PIL Image
16
+ image = Image.fromarray(image).convert("RGB")
17
+
18
+ # Process the image and prepare it as input for the model
19
+ inputs = processor(images=image, return_tensors="pt")
20
+
21
+ # Perform inference without calculating gradients
22
+ with torch.no_grad():
23
+ outputs = model(**inputs)
24
+ logits = outputs.logits
25
+
26
+ # Apply softmax to get probabilities and convert to a list
27
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
28
+
29
+ # Create a dictionary of labels and their corresponding probabilities
30
+ # This now correctly uses the labels from the model's configuration
31
+ prediction = {model.config.id2label[i]: round(probs[i], 3) for i in range(len(probs))}
32
+
33
+ return prediction
34
+
35
+ # Create the Gradio Interface
36
+ iface = gr.Interface(
37
+ fn=detect_fracture,
38
+ inputs=gr.Image(type="numpy", label="Upload Bone X-ray"),
39
+ outputs=gr.Label(num_top_classes=2, label="Detection Result"),
40
+ title="🔬 Bone Fracture Detection",
41
+ description="Upload a bone X-ray image to detect if there is a fracture. The model will return the probability for 'Fractured' and 'Not Fractured'.",
42
+ examples=[
43
+ ["fractured_example.png"],
44
+ ["not_fractured_example.png"]
45
+ ] # Note: You would need to have these image files in the same directory for the examples to work.
46
+ )
47
+
48
+ # Launch the app
49
+ if __name__ == "__main__":
50
+ iface.launch()