|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from tqdm import tqdm |
|
import copy |
|
import argparse |
|
import torch |
|
import math |
|
import cv2 |
|
import numpy as np |
|
import dlib |
|
|
|
from star.lib import utility |
|
from star.asset import predictor_path, model_path |
|
|
|
from vhap.util.log import get_logger |
|
logger = get_logger(__name__) |
|
|
|
|
|
class GetCropMatrix(): |
|
""" |
|
from_shape -> transform_matrix |
|
""" |
|
|
|
def __init__(self, image_size, target_face_scale, align_corners=False): |
|
self.image_size = image_size |
|
self.target_face_scale = target_face_scale |
|
self.align_corners = align_corners |
|
|
|
def _compose_rotate_and_scale(self, angle, scale, shift_xy, from_center, to_center): |
|
cosv = math.cos(angle) |
|
sinv = math.sin(angle) |
|
|
|
fx, fy = from_center |
|
tx, ty = to_center |
|
|
|
acos = scale * cosv |
|
asin = scale * sinv |
|
|
|
a0 = acos |
|
a1 = -asin |
|
a2 = tx - acos * fx + asin * fy + shift_xy[0] |
|
|
|
b0 = asin |
|
b1 = acos |
|
b2 = ty - asin * fx - acos * fy + shift_xy[1] |
|
|
|
rot_scale_m = np.array([ |
|
[a0, a1, a2], |
|
[b0, b1, b2], |
|
[0.0, 0.0, 1.0] |
|
], np.float32) |
|
return rot_scale_m |
|
|
|
def process(self, scale, center_w, center_h): |
|
if self.align_corners: |
|
to_w, to_h = self.image_size - 1, self.image_size - 1 |
|
else: |
|
to_w, to_h = self.image_size, self.image_size |
|
|
|
rot_mu = 0 |
|
scale_mu = self.image_size / (scale * self.target_face_scale * 200.0) |
|
shift_xy_mu = (0, 0) |
|
matrix = self._compose_rotate_and_scale( |
|
rot_mu, scale_mu, shift_xy_mu, |
|
from_center=[center_w, center_h], |
|
to_center=[to_w / 2.0, to_h / 2.0]) |
|
return matrix |
|
|
|
|
|
class TransformPerspective(): |
|
""" |
|
image, matrix3x3 -> transformed_image |
|
""" |
|
|
|
def __init__(self, image_size): |
|
self.image_size = image_size |
|
|
|
def process(self, image, matrix): |
|
return cv2.warpPerspective( |
|
image, matrix, dsize=(self.image_size, self.image_size), |
|
flags=cv2.INTER_LINEAR, borderValue=0) |
|
|
|
|
|
class TransformPoints2D(): |
|
""" |
|
points (nx2), matrix (3x3) -> points (nx2) |
|
""" |
|
|
|
def process(self, srcPoints, matrix): |
|
|
|
desPoints = np.concatenate([srcPoints, np.ones_like(srcPoints[:, [0]])], axis=1) |
|
desPoints = desPoints @ np.transpose(matrix) |
|
desPoints = desPoints[:, :2] / desPoints[:, [2, 2]] |
|
return desPoints.astype(srcPoints.dtype) |
|
|
|
|
|
class Alignment: |
|
def __init__(self, args, model_path, dl_framework, device_ids): |
|
self.input_size = 256 |
|
self.target_face_scale = 1.0 |
|
self.dl_framework = dl_framework |
|
|
|
|
|
if self.dl_framework == "pytorch": |
|
|
|
self.config = utility.get_config(args) |
|
self.config.device_id = device_ids[0] |
|
|
|
utility.set_environment(self.config) |
|
self.config.init_instance() |
|
if self.config.logger is not None: |
|
self.config.logger.info("Loaded configure file %s: %s" % (args.config_name, self.config.id)) |
|
self.config.logger.info("\n" + "\n".join(["%s: %s" % item for item in self.config.__dict__.items()])) |
|
|
|
net = utility.get_net(self.config) |
|
if device_ids == [-1]: |
|
checkpoint = torch.load(model_path, map_location="cpu") |
|
else: |
|
checkpoint = torch.load(model_path) |
|
net.load_state_dict(checkpoint["net"]) |
|
net = net.to(self.config.device_id) |
|
net.eval() |
|
self.alignment = net |
|
else: |
|
assert False |
|
|
|
self.getCropMatrix = GetCropMatrix(image_size=self.input_size, target_face_scale=self.target_face_scale, |
|
align_corners=True) |
|
self.transformPerspective = TransformPerspective(image_size=self.input_size) |
|
self.transformPoints2D = TransformPoints2D() |
|
|
|
def norm_points(self, points, align_corners=False): |
|
if align_corners: |
|
|
|
return points / torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2) * 2 - 1 |
|
else: |
|
|
|
return (points * 2 + 1) / torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1 |
|
|
|
def denorm_points(self, points, align_corners=False): |
|
if align_corners: |
|
|
|
return (points + 1) / 2 * torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2) |
|
else: |
|
|
|
return ((points + 1) * torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1) / 2 |
|
|
|
def preprocess(self, image, scale, center_w, center_h): |
|
matrix = self.getCropMatrix.process(scale, center_w, center_h) |
|
input_tensor = self.transformPerspective.process(image, matrix) |
|
input_tensor = input_tensor[np.newaxis, :] |
|
|
|
input_tensor = torch.from_numpy(input_tensor) |
|
input_tensor = input_tensor.float().permute(0, 3, 1, 2) |
|
input_tensor = input_tensor / 255.0 * 2.0 - 1.0 |
|
input_tensor = input_tensor.to(self.config.device_id) |
|
return input_tensor, matrix |
|
|
|
def postprocess(self, srcPoints, coeff): |
|
|
|
|
|
|
|
dstPoints = np.zeros(srcPoints.shape, dtype=np.float32) |
|
for i in range(srcPoints.shape[0]): |
|
dstPoints[i][0] = coeff[0][0] * srcPoints[i][0] + coeff[0][1] * srcPoints[i][1] + coeff[0][2] |
|
dstPoints[i][1] = coeff[1][0] * srcPoints[i][0] + coeff[1][1] * srcPoints[i][1] + coeff[1][2] |
|
return dstPoints |
|
|
|
def analyze(self, image, scale, center_w, center_h): |
|
input_tensor, matrix = self.preprocess(image, scale, center_w, center_h) |
|
|
|
if self.dl_framework == "pytorch": |
|
with torch.no_grad(): |
|
output = self.alignment(input_tensor) |
|
landmarks = output[-1][0] |
|
else: |
|
assert False |
|
|
|
landmarks = self.denorm_points(landmarks) |
|
landmarks = landmarks.data.cpu().numpy()[0] |
|
landmarks = self.postprocess(landmarks, np.linalg.inv(matrix)) |
|
|
|
return landmarks |
|
|
|
|
|
def draw_pts(img, pts, mode="pts", shift=4, color=(0, 255, 0), radius=1, thickness=1, save_path=None, dif=0, |
|
scale=0.3, concat=False, ): |
|
img_draw = copy.deepcopy(img) |
|
for cnt, p in enumerate(pts): |
|
if mode == "index": |
|
cv2.putText(img_draw, str(cnt), (int(float(p[0] + dif)), int(float(p[1] + dif))), cv2.FONT_HERSHEY_SIMPLEX, |
|
scale, color, thickness) |
|
elif mode == 'pts': |
|
if len(img_draw.shape) > 2: |
|
|
|
img_draw = cv2.cvtColor(img_draw, cv2.COLOR_BGR2RGB) |
|
img_draw = cv2.cvtColor(img_draw, cv2.COLOR_RGB2BGR) |
|
cv2.circle(img_draw, (int(p[0] * (1 << shift)), int(p[1] * (1 << shift))), radius << shift, color, -1, |
|
cv2.LINE_AA, shift=shift) |
|
else: |
|
raise NotImplementedError |
|
if concat: |
|
img_draw = np.concatenate((img, img_draw), axis=1) |
|
if save_path is not None: |
|
cv2.imwrite(save_path, img_draw) |
|
return img_draw |
|
|
|
|
|
class LandmarkDetectorSTAR: |
|
def __init__( |
|
self, |
|
): |
|
self.detector = dlib.get_frontal_face_detector() |
|
self.shape_predictor = dlib.shape_predictor(predictor_path) |
|
|
|
|
|
args = argparse.Namespace() |
|
args.config_name = 'alignment' |
|
|
|
|
|
device_ids = '0' |
|
device_ids = list(map(int, device_ids.split(","))) |
|
self.alignment = Alignment(args, model_path, dl_framework="pytorch", device_ids=device_ids) |
|
|
|
def detect_single_image(self, img): |
|
bbox = self.detector(img, 1) |
|
|
|
if len(bbox) == 0: |
|
bbox = np.zeros(5) - 1 |
|
lmks = np.zeros([68, 3]) - 1 |
|
else: |
|
face = self.shape_predictor(img, bbox[0]) |
|
shape = [] |
|
for i in range(68): |
|
x = face.part(i).x |
|
y = face.part(i).y |
|
shape.append((x, y)) |
|
shape = np.array(shape) |
|
x1, x2 = shape[:, 0].min(), shape[:, 0].max() |
|
y1, y2 = shape[:, 1].min(), shape[:, 1].max() |
|
scale = min(x2 - x1, y2 - y1) / 200 * 1.05 |
|
center_w = (x2 + x1) / 2 |
|
center_h = (y2 + y1) / 2 |
|
|
|
scale, center_w, center_h = float(scale), float(center_w), float(center_h) |
|
lmks = self.alignment.analyze(img, scale, center_w, center_h) |
|
|
|
h, w = img.shape[:2] |
|
|
|
lmks = np.concatenate([lmks, np.ones([lmks.shape[0], 1])], axis=1).astype(np.float32) |
|
lmks[:, 0] /= w |
|
lmks[:, 1] /= h |
|
|
|
bbox = np.array([bbox[0].left(), bbox[0].top(), bbox[0].right(), bbox[0].bottom(), 1.]).astype(np.float32) |
|
bbox[[0, 2]] /= w |
|
bbox[[1, 3]] /= h |
|
|
|
return bbox, lmks |
|
|
|
def detect_dataset(self, dataloader): |
|
""" |
|
Annotates each frame with 68 facial landmarks |
|
:return: dict mapping frame number to landmarks numpy array and the same thing for bboxes |
|
""" |
|
logger.info("Initialize Landmark Detector (STAR)...") |
|
|
|
|
|
landmarks = {} |
|
bboxes = {} |
|
|
|
logger.info("Begin annotating landmarks...") |
|
for item in tqdm(dataloader): |
|
timestep_id = item["timestep_id"][0] |
|
camera_id = item["camera_id"][0] |
|
|
|
logger.info( |
|
f"Annotate facial landmarks for timestep: {timestep_id}, camera: {camera_id}" |
|
) |
|
img = item["rgb"][0].numpy() |
|
|
|
bbox, lmks = self.detect_single_image(img) |
|
if len(bbox) == 0: |
|
logger.error( |
|
f"No bbox found for frame: {timestep_id}, camera: {camera_id}. Setting landmarks to all -1." |
|
) |
|
|
|
if camera_id not in landmarks: |
|
landmarks[camera_id] = {} |
|
if camera_id not in bboxes: |
|
bboxes[camera_id] = {} |
|
landmarks[camera_id][timestep_id] = lmks |
|
bboxes[camera_id][timestep_id] = bbox |
|
return landmarks, bboxes |
|
|
|
def annotate_landmarks(self, dataloader): |
|
""" |
|
Annotates each frame with landmarks for face and iris. Assumes frames have been extracted |
|
:return: |
|
""" |
|
lmks_face, bboxes_faces = self.detect_dataset(dataloader) |
|
|
|
|
|
for camera_id, lmk_face_camera in lmks_face.items(): |
|
bounding_box = [] |
|
face_landmark_2d = [] |
|
for timestep_id in lmk_face_camera.keys(): |
|
bounding_box.append(bboxes_faces[camera_id][timestep_id][None]) |
|
face_landmark_2d.append(lmks_face[camera_id][timestep_id][None]) |
|
|
|
lmk_dict = { |
|
"bounding_box": bounding_box, |
|
"face_landmark_2d": face_landmark_2d, |
|
} |
|
|
|
for k, v in lmk_dict.items(): |
|
if len(v) > 0: |
|
lmk_dict[k] = np.concatenate(v, axis=0) |
|
out_path = dataloader.dataset.get_property_path( |
|
"landmark2d/STAR", camera_id=camera_id |
|
) |
|
logger.info(f"Saving landmarks to: {out_path}") |
|
if not out_path.parent.exists(): |
|
out_path.parent.mkdir(parents=True) |
|
np.savez(out_path, **lmk_dict) |
|
|
|
|
|
if __name__ == "__main__": |
|
import tyro |
|
from tqdm import tqdm |
|
from torch.utils.data import DataLoader |
|
from vhap.config.base import DataConfig, import_module |
|
|
|
cfg = tyro.cli(DataConfig) |
|
dataset = import_module(cfg._target)( |
|
cfg=cfg, |
|
img_to_tensor=False, |
|
batchify_all_views=True, |
|
) |
|
dataset.items = dataset.items[:2] |
|
|
|
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=4) |
|
|
|
detector = LandmarkDetectorSTAR() |
|
detector.annotate_landmarks(dataloader) |
|
|