File size: 12,904 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
#
# Toyota Motor Europe NV/SA and its affiliated companies retain all intellectual
# property and proprietary rights in and to this software and related documentation.
# Any commercial use, reproduction, disclosure or distribution of this software and
# related documentation without an express license agreement from Toyota Motor Europe NV/SA
# is strictly prohibited.
#
from tqdm import tqdm
import copy
import argparse
import torch
import math
import cv2
import numpy as np
import dlib
from star.lib import utility
from star.asset import predictor_path, model_path
from vhap.util.log import get_logger
logger = get_logger(__name__)
class GetCropMatrix():
"""
from_shape -> transform_matrix
"""
def __init__(self, image_size, target_face_scale, align_corners=False):
self.image_size = image_size
self.target_face_scale = target_face_scale
self.align_corners = align_corners
def _compose_rotate_and_scale(self, angle, scale, shift_xy, from_center, to_center):
cosv = math.cos(angle)
sinv = math.sin(angle)
fx, fy = from_center
tx, ty = to_center
acos = scale * cosv
asin = scale * sinv
a0 = acos
a1 = -asin
a2 = tx - acos * fx + asin * fy + shift_xy[0]
b0 = asin
b1 = acos
b2 = ty - asin * fx - acos * fy + shift_xy[1]
rot_scale_m = np.array([
[a0, a1, a2],
[b0, b1, b2],
[0.0, 0.0, 1.0]
], np.float32)
return rot_scale_m
def process(self, scale, center_w, center_h):
if self.align_corners:
to_w, to_h = self.image_size - 1, self.image_size - 1
else:
to_w, to_h = self.image_size, self.image_size
rot_mu = 0
scale_mu = self.image_size / (scale * self.target_face_scale * 200.0)
shift_xy_mu = (0, 0)
matrix = self._compose_rotate_and_scale(
rot_mu, scale_mu, shift_xy_mu,
from_center=[center_w, center_h],
to_center=[to_w / 2.0, to_h / 2.0])
return matrix
class TransformPerspective():
"""
image, matrix3x3 -> transformed_image
"""
def __init__(self, image_size):
self.image_size = image_size
def process(self, image, matrix):
return cv2.warpPerspective(
image, matrix, dsize=(self.image_size, self.image_size),
flags=cv2.INTER_LINEAR, borderValue=0)
class TransformPoints2D():
"""
points (nx2), matrix (3x3) -> points (nx2)
"""
def process(self, srcPoints, matrix):
# nx3
desPoints = np.concatenate([srcPoints, np.ones_like(srcPoints[:, [0]])], axis=1)
desPoints = desPoints @ np.transpose(matrix) # nx3
desPoints = desPoints[:, :2] / desPoints[:, [2, 2]]
return desPoints.astype(srcPoints.dtype)
class Alignment:
def __init__(self, args, model_path, dl_framework, device_ids):
self.input_size = 256
self.target_face_scale = 1.0
self.dl_framework = dl_framework
# model
if self.dl_framework == "pytorch":
# conf
self.config = utility.get_config(args)
self.config.device_id = device_ids[0]
# set environment
utility.set_environment(self.config)
self.config.init_instance()
if self.config.logger is not None:
self.config.logger.info("Loaded configure file %s: %s" % (args.config_name, self.config.id))
self.config.logger.info("\n" + "\n".join(["%s: %s" % item for item in self.config.__dict__.items()]))
net = utility.get_net(self.config)
if device_ids == [-1]:
checkpoint = torch.load(model_path, map_location="cpu")
else:
checkpoint = torch.load(model_path)
net.load_state_dict(checkpoint["net"])
net = net.to(self.config.device_id)
net.eval()
self.alignment = net
else:
assert False
self.getCropMatrix = GetCropMatrix(image_size=self.input_size, target_face_scale=self.target_face_scale,
align_corners=True)
self.transformPerspective = TransformPerspective(image_size=self.input_size)
self.transformPoints2D = TransformPoints2D()
def norm_points(self, points, align_corners=False):
if align_corners:
# [0, SIZE-1] -> [-1, +1]
return points / torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2) * 2 - 1
else:
# [-0.5, SIZE-0.5] -> [-1, +1]
return (points * 2 + 1) / torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1
def denorm_points(self, points, align_corners=False):
if align_corners:
# [-1, +1] -> [0, SIZE-1]
return (points + 1) / 2 * torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2)
else:
# [-1, +1] -> [-0.5, SIZE-0.5]
return ((points + 1) * torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1) / 2
def preprocess(self, image, scale, center_w, center_h):
matrix = self.getCropMatrix.process(scale, center_w, center_h)
input_tensor = self.transformPerspective.process(image, matrix)
input_tensor = input_tensor[np.newaxis, :]
input_tensor = torch.from_numpy(input_tensor)
input_tensor = input_tensor.float().permute(0, 3, 1, 2)
input_tensor = input_tensor / 255.0 * 2.0 - 1.0
input_tensor = input_tensor.to(self.config.device_id)
return input_tensor, matrix
def postprocess(self, srcPoints, coeff):
# dstPoints = self.transformPoints2D.process(srcPoints, coeff)
# matrix^(-1) * src = dst
# src = matrix * dst
dstPoints = np.zeros(srcPoints.shape, dtype=np.float32)
for i in range(srcPoints.shape[0]):
dstPoints[i][0] = coeff[0][0] * srcPoints[i][0] + coeff[0][1] * srcPoints[i][1] + coeff[0][2]
dstPoints[i][1] = coeff[1][0] * srcPoints[i][0] + coeff[1][1] * srcPoints[i][1] + coeff[1][2]
return dstPoints
def analyze(self, image, scale, center_w, center_h):
input_tensor, matrix = self.preprocess(image, scale, center_w, center_h)
if self.dl_framework == "pytorch":
with torch.no_grad():
output = self.alignment(input_tensor)
landmarks = output[-1][0]
else:
assert False
landmarks = self.denorm_points(landmarks)
landmarks = landmarks.data.cpu().numpy()[0]
landmarks = self.postprocess(landmarks, np.linalg.inv(matrix))
return landmarks
def draw_pts(img, pts, mode="pts", shift=4, color=(0, 255, 0), radius=1, thickness=1, save_path=None, dif=0,
scale=0.3, concat=False, ):
img_draw = copy.deepcopy(img)
for cnt, p in enumerate(pts):
if mode == "index":
cv2.putText(img_draw, str(cnt), (int(float(p[0] + dif)), int(float(p[1] + dif))), cv2.FONT_HERSHEY_SIMPLEX,
scale, color, thickness)
elif mode == 'pts':
if len(img_draw.shape) > 2:
# 此处来回切换是因为opencv的bug
img_draw = cv2.cvtColor(img_draw, cv2.COLOR_BGR2RGB)
img_draw = cv2.cvtColor(img_draw, cv2.COLOR_RGB2BGR)
cv2.circle(img_draw, (int(p[0] * (1 << shift)), int(p[1] * (1 << shift))), radius << shift, color, -1,
cv2.LINE_AA, shift=shift)
else:
raise NotImplementedError
if concat:
img_draw = np.concatenate((img, img_draw), axis=1)
if save_path is not None:
cv2.imwrite(save_path, img_draw)
return img_draw
class LandmarkDetectorSTAR:
def __init__(
self,
):
self.detector = dlib.get_frontal_face_detector()
self.shape_predictor = dlib.shape_predictor(predictor_path)
# facial landmark detector
args = argparse.Namespace()
args.config_name = 'alignment'
# could be downloaded here: https://drive.google.com/file/d/1aOx0wYEZUfBndYy_8IYszLPG_D2fhxrT/view
# model_path = '/path/to/WFLW_STARLoss_NME_4_02_FR_2_32_AUC_0_605.pkl'
device_ids = '0'
device_ids = list(map(int, device_ids.split(",")))
self.alignment = Alignment(args, model_path, dl_framework="pytorch", device_ids=device_ids)
def detect_single_image(self, img):
bbox = self.detector(img, 1)
if len(bbox) == 0:
bbox = np.zeros(5) - 1
lmks = np.zeros([68, 3]) - 1 # set to -1 when landmarks is inavailable
else:
face = self.shape_predictor(img, bbox[0])
shape = []
for i in range(68):
x = face.part(i).x
y = face.part(i).y
shape.append((x, y))
shape = np.array(shape)
x1, x2 = shape[:, 0].min(), shape[:, 0].max()
y1, y2 = shape[:, 1].min(), shape[:, 1].max()
scale = min(x2 - x1, y2 - y1) / 200 * 1.05
center_w = (x2 + x1) / 2
center_h = (y2 + y1) / 2
scale, center_w, center_h = float(scale), float(center_w), float(center_h)
lmks = self.alignment.analyze(img, scale, center_w, center_h)
h, w = img.shape[:2]
lmks = np.concatenate([lmks, np.ones([lmks.shape[0], 1])], axis=1).astype(np.float32) # (x, y, 1)
lmks[:, 0] /= w
lmks[:, 1] /= h
bbox = np.array([bbox[0].left(), bbox[0].top(), bbox[0].right(), bbox[0].bottom(), 1.]).astype(np.float32) # (x1, y1, x2, y2, score)
bbox[[0, 2]] /= w
bbox[[1, 3]] /= h
return bbox, lmks
def detect_dataset(self, dataloader):
"""
Annotates each frame with 68 facial landmarks
:return: dict mapping frame number to landmarks numpy array and the same thing for bboxes
"""
logger.info("Initialize Landmark Detector (STAR)...")
# 68 facial landmark detector
landmarks = {}
bboxes = {}
logger.info("Begin annotating landmarks...")
for item in tqdm(dataloader):
timestep_id = item["timestep_id"][0]
camera_id = item["camera_id"][0]
logger.info(
f"Annotate facial landmarks for timestep: {timestep_id}, camera: {camera_id}"
)
img = item["rgb"][0].numpy()
bbox, lmks = self.detect_single_image(img)
if len(bbox) == 0:
logger.error(
f"No bbox found for frame: {timestep_id}, camera: {camera_id}. Setting landmarks to all -1."
)
if camera_id not in landmarks:
landmarks[camera_id] = {}
if camera_id not in bboxes:
bboxes[camera_id] = {}
landmarks[camera_id][timestep_id] = lmks
bboxes[camera_id][timestep_id] = bbox
return landmarks, bboxes
def annotate_landmarks(self, dataloader):
"""
Annotates each frame with landmarks for face and iris. Assumes frames have been extracted
:return:
"""
lmks_face, bboxes_faces = self.detect_dataset(dataloader)
# construct final json
for camera_id, lmk_face_camera in lmks_face.items():
bounding_box = []
face_landmark_2d = []
for timestep_id in lmk_face_camera.keys():
bounding_box.append(bboxes_faces[camera_id][timestep_id][None])
face_landmark_2d.append(lmks_face[camera_id][timestep_id][None])
lmk_dict = {
"bounding_box": bounding_box,
"face_landmark_2d": face_landmark_2d,
}
for k, v in lmk_dict.items():
if len(v) > 0:
lmk_dict[k] = np.concatenate(v, axis=0)
out_path = dataloader.dataset.get_property_path(
"landmark2d/STAR", camera_id=camera_id
)
logger.info(f"Saving landmarks to: {out_path}")
if not out_path.parent.exists():
out_path.parent.mkdir(parents=True)
np.savez(out_path, **lmk_dict)
if __name__ == "__main__":
import tyro
from tqdm import tqdm
from torch.utils.data import DataLoader
from vhap.config.base import DataConfig, import_module
cfg = tyro.cli(DataConfig)
dataset = import_module(cfg._target)(
cfg=cfg,
img_to_tensor=False,
batchify_all_views=True,
)
dataset.items = dataset.items[:2]
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=4)
detector = LandmarkDetectorSTAR()
detector.annotate_landmarks(dataloader)
|