|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import numpy as np |
|
import torch |
|
|
|
def images_to_video(images, output_path, fps, gradio_codec: bool, verbose=False): |
|
import imageio |
|
|
|
os.makedirs(os.path.dirname(output_path), exist_ok=True) |
|
frames = [] |
|
for i in range(images.shape[0]): |
|
if isinstance(images, torch.Tensor): |
|
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) |
|
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ |
|
f"Frame shape mismatch: {frame.shape} vs {images.shape}" |
|
assert frame.min() >= 0 and frame.max() <= 255, \ |
|
f"Frame value out of range: {frame.min()} ~ {frame.max()}" |
|
else: |
|
frame = images[i] |
|
frames.append(frame) |
|
frames = np.stack(frames) |
|
if gradio_codec: |
|
imageio.mimwrite(output_path, frames, fps=fps, quality=10) |
|
else: |
|
|
|
imageio.mimwrite(output_path, frames, fps=fps, quality=10) |
|
|
|
if verbose: |
|
print(f"Using gradio codec option {gradio_codec}") |
|
print(f"Saved video to {output_path}") |
|
|
|
|
|
def save_images2video(img_lst, v_pth, fps): |
|
import moviepy.editor as mpy |
|
|
|
clips = [mpy.ImageClip(img).set_duration(0.1) for img in img_lst] |
|
|
|
|
|
video = mpy.concatenate_videoclips(clips, method="compose") |
|
|
|
|
|
video.write_videofile(v_pth, fps=fps) |
|
print("save video to:", v_pth) |
|
|
|
|
|
if __name__ == "__main__": |
|
from glob import glob |
|
clip_name = "clip1" |
|
ptn = f"./assets/sample_motion/export/{clip_name}/images/*.png" |
|
images_pths = glob(ptn) |
|
import cv2 |
|
import numpy as np |
|
images = [cv2.imread(pth) for pth in images_pths] |
|
save_images2video(images, "./assets/sample_mption/export/{clip_name}/video.mp4", 25, True) |