# Copyright (c) 2023-2024, Zexin He # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import torch def images_to_video(images, output_path, fps, gradio_codec: bool, verbose=False): import imageio # images: torch.tensor (T, C, H, W), 0-1 or numpy: (T, H, W, 3) 0-255 os.makedirs(os.path.dirname(output_path), exist_ok=True) frames = [] for i in range(images.shape[0]): if isinstance(images, torch.Tensor): frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ f"Frame shape mismatch: {frame.shape} vs {images.shape}" assert frame.min() >= 0 and frame.max() <= 255, \ f"Frame value out of range: {frame.min()} ~ {frame.max()}" else: frame = images[i] frames.append(frame) frames = np.stack(frames) if gradio_codec: imageio.mimwrite(output_path, frames, fps=fps, quality=10) else: # imageio.mimwrite(output_path, frames, fps=fps, codec='mpeg4', quality=10) imageio.mimwrite(output_path, frames, fps=fps, quality=10) if verbose: print(f"Using gradio codec option {gradio_codec}") print(f"Saved video to {output_path}") def save_images2video(img_lst, v_pth, fps): import moviepy.editor as mpy # Convert the list of NumPy arrays to a list of ImageClip objects clips = [mpy.ImageClip(img).set_duration(0.1) for img in img_lst] # 0.1 seconds per frame # Concatenate the ImageClips into a single VideoClip video = mpy.concatenate_videoclips(clips, method="compose") # Write the VideoClip to a file video.write_videofile(v_pth, fps=fps) # setting fps to 10 as example print("save video to:", v_pth) if __name__ == "__main__": from glob import glob clip_name = "clip1" ptn = f"./assets/sample_motion/export/{clip_name}/images/*.png" images_pths = glob(ptn) import cv2 import numpy as np images = [cv2.imread(pth) for pth in images_pths] save_images2video(images, "./assets/sample_mption/export/{clip_name}/video.mp4", 25, True)