|
""" |
|
Ported from Paella |
|
""" |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.models.modeling_utils import ModelMixin |
|
|
|
import functools |
|
|
|
from taming.modules.util import ActNorm |
|
|
|
|
|
|
|
class Discriminator(ModelMixin, ConfigMixin): |
|
@register_to_config |
|
def __init__(self, in_channels=3, cond_channels=0, hidden_channels=512, depth=6): |
|
super().__init__() |
|
d = max(depth - 3, 3) |
|
layers = [ |
|
nn.utils.spectral_norm( |
|
nn.Conv2d(in_channels, hidden_channels // (2**d), kernel_size=3, stride=2, padding=1) |
|
), |
|
nn.LeakyReLU(0.2), |
|
] |
|
for i in range(depth - 1): |
|
c_in = hidden_channels // (2 ** max((d - i), 0)) |
|
c_out = hidden_channels // (2 ** max((d - 1 - i), 0)) |
|
layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1))) |
|
layers.append(nn.InstanceNorm2d(c_out)) |
|
layers.append(nn.LeakyReLU(0.2)) |
|
self.encoder = nn.Sequential(*layers) |
|
self.shuffle = nn.Conv2d( |
|
(hidden_channels + cond_channels) if cond_channels > 0 else hidden_channels, 1, kernel_size=1 |
|
) |
|
|
|
|
|
|
|
def forward(self, x, cond=None): |
|
x = self.encoder(x) |
|
if cond is not None: |
|
cond = cond.view( |
|
cond.size(0), |
|
cond.size(1), |
|
1, |
|
1, |
|
).expand(-1, -1, x.size(-2), x.size(-1)) |
|
x = torch.cat([x, cond], dim=1) |
|
x = self.shuffle(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
def weights_init(m): |
|
classname = m.__class__.__name__ |
|
if classname.find('Conv') != -1: |
|
nn.init.normal_(m.weight.data, 0.0, 0.02) |
|
elif classname.find('BatchNorm') != -1: |
|
nn.init.normal_(m.weight.data, 1.0, 0.02) |
|
nn.init.constant_(m.bias.data, 0) |
|
|
|
|
|
class NLayerDiscriminator(nn.Module): |
|
"""Defines a PatchGAN discriminator as in Pix2Pix |
|
--> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py |
|
""" |
|
def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): |
|
"""Construct a PatchGAN discriminator |
|
Parameters: |
|
input_nc (int) -- the number of channels in input images |
|
ndf (int) -- the number of filters in the last conv layer |
|
n_layers (int) -- the number of conv layers in the discriminator |
|
norm_layer -- normalization layer |
|
""" |
|
super(NLayerDiscriminator, self).__init__() |
|
if not use_actnorm: |
|
|
|
norm_layer = nn.InstanceNorm2d |
|
else: |
|
norm_layer = ActNorm |
|
if type(norm_layer) == functools.partial: |
|
|
|
use_bias = norm_layer.func != nn.InstanceNorm2d |
|
else: |
|
|
|
use_bias = norm_layer != nn.InstanceNorm2d |
|
|
|
kw = 4 |
|
padw = 1 |
|
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, False)] |
|
nf_mult = 1 |
|
nf_mult_prev = 1 |
|
for n in range(1, n_layers): |
|
nf_mult_prev = nf_mult |
|
nf_mult = min(2 ** n, 8) |
|
sequence += [ |
|
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), |
|
norm_layer(ndf * nf_mult), |
|
nn.LeakyReLU(0.2, False) |
|
] |
|
|
|
nf_mult_prev = nf_mult |
|
nf_mult = min(2 ** n_layers, 8) |
|
sequence += [ |
|
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), |
|
norm_layer(ndf * nf_mult), |
|
nn.LeakyReLU(0.2, False) |
|
] |
|
|
|
sequence += [ |
|
nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] |
|
self.main = nn.Sequential(*sequence) |
|
|
|
def forward(self, input): |
|
"""Standard forward.""" |
|
return self.main(input) |
|
|