""" Ported from Paella """ import torch from torch import nn from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin import functools # import torch.nn as nn from taming.modules.util import ActNorm # Discriminator model ported from Paella https://github.com/dome272/Paella/blob/main/src_distributed/vqgan.py class Discriminator(ModelMixin, ConfigMixin): @register_to_config def __init__(self, in_channels=3, cond_channels=0, hidden_channels=512, depth=6): super().__init__() d = max(depth - 3, 3) layers = [ nn.utils.spectral_norm( nn.Conv2d(in_channels, hidden_channels // (2**d), kernel_size=3, stride=2, padding=1) ), nn.LeakyReLU(0.2), ] for i in range(depth - 1): c_in = hidden_channels // (2 ** max((d - i), 0)) c_out = hidden_channels // (2 ** max((d - 1 - i), 0)) layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1))) layers.append(nn.InstanceNorm2d(c_out)) layers.append(nn.LeakyReLU(0.2)) self.encoder = nn.Sequential(*layers) self.shuffle = nn.Conv2d( (hidden_channels + cond_channels) if cond_channels > 0 else hidden_channels, 1, kernel_size=1 ) # self.logits = nn.Sigmoid() def forward(self, x, cond=None): x = self.encoder(x) if cond is not None: cond = cond.view( cond.size(0), cond.size(1), 1, 1, ).expand(-1, -1, x.size(-2), x.size(-1)) x = torch.cat([x, cond], dim=1) x = self.shuffle(x) # x = self.logits(x) return x def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find('BatchNorm') != -1: nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0) class NLayerDiscriminator(nn.Module): """Defines a PatchGAN discriminator as in Pix2Pix --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py """ def __init__(self, input_nc=3, ndf=64, n_layers=3, use_actnorm=False): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator, self).__init__() if not use_actnorm: # norm_layer = nn.BatchNorm2d norm_layer = nn.InstanceNorm2d else: norm_layer = ActNorm if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters # use_bias = norm_layer.func != nn.BatchNorm2d use_bias = norm_layer.func != nn.InstanceNorm2d else: # use_bias = norm_layer != nn.BatchNorm2d use_bias = norm_layer != nn.InstanceNorm2d kw = 4 padw = 1 sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, False)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, False) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, False) ] sequence += [ nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map self.main = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.main(input)