|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import defaultdict |
|
import os |
|
import glob |
|
from typing import Union |
|
import random |
|
import numpy as np |
|
import torch |
|
|
|
import json |
|
from PIL import Image |
|
import cv2 |
|
|
|
from lam.datasets.base import BaseDataset |
|
from lam.datasets.cam_utils import build_camera_standard, build_camera_principle, camera_normalization_objaverse |
|
from lam.utils.proxy import no_proxy |
|
from typing import Optional, Union |
|
|
|
__all__ = ['VideoHeadDataset'] |
|
|
|
|
|
class VideoHeadDataset(BaseDataset): |
|
|
|
def __init__(self, root_dirs: str, meta_path: Optional[Union[str, list]], |
|
sample_side_views: int, |
|
render_image_res_low: int, render_image_res_high: int, render_region_size: int, |
|
source_image_res: int, |
|
repeat_num=1, |
|
crop_range_ratio_hw=[1.0, 1.0], |
|
aspect_standard=1.0, |
|
enlarge_ratio=[0.8, 1.2], |
|
debug=False, |
|
is_val=False, |
|
**kwargs): |
|
super().__init__(root_dirs, meta_path) |
|
self.sample_side_views = sample_side_views |
|
self.render_image_res_low = render_image_res_low |
|
self.render_image_res_high = render_image_res_high |
|
if not (isinstance(render_region_size, list) or isinstance(render_region_size, tuple)): |
|
render_region_size = render_region_size, render_region_size |
|
self.render_region_size = render_region_size |
|
self.source_image_res = source_image_res |
|
|
|
self.uids = self.uids * repeat_num |
|
self.crop_range_ratio_hw = crop_range_ratio_hw |
|
self.debug = debug |
|
self.aspect_standard = aspect_standard |
|
|
|
assert self.render_image_res_low == self.render_image_res_high |
|
self.render_image_res = self.render_image_res_low |
|
self.enlarge_ratio = enlarge_ratio |
|
print(f"VideoHeadDataset, data_len:{len(self.uids)}, repeat_num:{repeat_num}, debug:{debug}, is_val:{is_val}") |
|
self.multiply = kwargs.get("multiply", 14) |
|
|
|
self.is_val = is_val |
|
|
|
@staticmethod |
|
def _load_pose(frame_info, transpose_R=False): |
|
c2w = torch.eye(4) |
|
c2w = np.array(frame_info["transform_matrix"]) |
|
c2w[:3, 1:3] *= -1 |
|
c2w = torch.FloatTensor(c2w) |
|
""" |
|
if transpose_R: |
|
w2c = torch.inverse(c2w) |
|
w2c[:3, :3] = w2c[:3, :3].transpose(1, 0).contiguous() |
|
c2w = torch.inverse(w2c) |
|
""" |
|
|
|
intrinsic = torch.eye(4) |
|
intrinsic[0, 0] = frame_info["fl_x"] |
|
intrinsic[1, 1] = frame_info["fl_y"] |
|
intrinsic[0, 2] = frame_info["cx"] |
|
intrinsic[1, 2] = frame_info["cy"] |
|
intrinsic = intrinsic.float() |
|
|
|
return c2w, intrinsic |
|
|
|
def img_center_padding(self, img_np, pad_ratio): |
|
|
|
ori_w, ori_h = img_np.shape[:2] |
|
|
|
w = round((1 + pad_ratio) * ori_w) |
|
h = round((1 + pad_ratio) * ori_h) |
|
|
|
if len(img_np.shape) > 2: |
|
img_pad_np = np.zeros((w, h, img_np.shape[2]), dtype=np.uint8) |
|
else: |
|
img_pad_np = np.zeros((w, h), dtype=np.uint8) |
|
offset_h, offset_w = (w - img_np.shape[0]) // 2, (h - img_np.shape[1]) // 2 |
|
img_pad_np[offset_h: offset_h + img_np.shape[0]:, offset_w: offset_w + img_np.shape[1]] = img_np |
|
|
|
return img_pad_np |
|
|
|
def resize_image_keepaspect_np(self, img, max_tgt_size): |
|
""" |
|
similar to ImageOps.contain(img_pil, (img_size, img_size)) # keep the same aspect ratio |
|
""" |
|
h, w = img.shape[:2] |
|
ratio = max_tgt_size / max(h, w) |
|
new_h, new_w = round(h * ratio), round(w * ratio) |
|
return cv2.resize(img, dsize=(new_w, new_h), interpolation=cv2.INTER_AREA) |
|
|
|
def center_crop_according_to_mask(self, img, mask, aspect_standard, enlarge_ratio): |
|
""" |
|
img: [H, W, 3] |
|
mask: [H, W] |
|
""" |
|
ys, xs = np.where(mask > 0) |
|
|
|
if len(xs) == 0 or len(ys) == 0: |
|
raise Exception("empty mask") |
|
|
|
x_min = np.min(xs) |
|
x_max = np.max(xs) |
|
y_min = np.min(ys) |
|
y_max = np.max(ys) |
|
|
|
center_x, center_y = img.shape[1]//2, img.shape[0]//2 |
|
|
|
half_w = max(abs(center_x - x_min), abs(center_x - x_max)) |
|
half_h = max(abs(center_y - y_min), abs(center_y - y_max)) |
|
aspect = half_h / half_w |
|
|
|
if aspect >= aspect_standard: |
|
half_w = round(half_h / aspect_standard) |
|
else: |
|
half_h = round(half_w * aspect_standard) |
|
|
|
if abs(enlarge_ratio[0] - 1) > 0.01 or abs(enlarge_ratio[1] - 1) > 0.01: |
|
enlarge_ratio_min, enlarge_ratio_max = enlarge_ratio |
|
enlarge_ratio_max_real = min(center_y / half_h, center_x / half_w) |
|
enlarge_ratio_max = min(enlarge_ratio_max_real, enlarge_ratio_max) |
|
enlarge_ratio_min = min(enlarge_ratio_max_real, enlarge_ratio_min) |
|
enlarge_ratio_cur = np.random.rand() * (enlarge_ratio_max - enlarge_ratio_min) + enlarge_ratio_min |
|
half_h, half_w = round(enlarge_ratio_cur * half_h), round(enlarge_ratio_cur * half_w) |
|
|
|
assert half_h <= center_y |
|
assert half_w <= center_x |
|
assert abs(half_h / half_w - aspect_standard) < 0.03 |
|
|
|
offset_x = center_x - half_w |
|
offset_y = center_y - half_h |
|
|
|
new_img = img[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w] |
|
new_mask = mask[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w] |
|
|
|
return new_img, new_mask, offset_x, offset_y |
|
|
|
def load_rgb_image_with_aug_bg(self, rgb_path, mask_path, bg_color, pad_ratio, max_tgt_size, aspect_standard, enlarge_ratio, |
|
render_tgt_size, multiply, intr): |
|
rgb = np.array(Image.open(rgb_path)) |
|
interpolation = cv2.INTER_AREA |
|
if rgb.shape[0] != 1024 and rgb.shape[0] == rgb.shape[1]: |
|
rgb = cv2.resize(rgb, (1024, 1024), interpolation=interpolation) |
|
if pad_ratio > 0: |
|
rgb = self.img_center_padding(rgb, pad_ratio) |
|
|
|
rgb = rgb / 255.0 |
|
if mask_path is not None: |
|
if os.path.exists(mask_path): |
|
mask = np.array(Image.open(mask_path)) > 180 |
|
if len(mask.shape) == 3: |
|
mask = mask[..., 0] |
|
assert pad_ratio == 0 |
|
|
|
|
|
|
|
else: |
|
|
|
mask = (rgb >= 0.99).sum(axis=2) == 3 |
|
mask = np.logical_not(mask) |
|
|
|
mask = (mask * 255).astype(np.uint8) |
|
kernel_size, iterations = 3, 7 |
|
kernel = np.ones((kernel_size, kernel_size), np.uint8) |
|
mask = cv2.erode(mask, kernel, iterations=iterations) / 255.0 |
|
else: |
|
|
|
assert rgb.shape[2] == 4 |
|
mask = rgb[:, :, 3] |
|
if len(mask.shape) > 2: |
|
mask = mask[:, :, 0] |
|
|
|
mask = (mask > 0.5).astype(np.float32) |
|
rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None]) |
|
|
|
|
|
try: |
|
rgb, mask, offset_x, offset_y = self.center_crop_according_to_mask(rgb, mask, aspect_standard, enlarge_ratio) |
|
except Exception as ex: |
|
print(rgb_path, mask_path, ex) |
|
|
|
intr[0, 2] -= offset_x |
|
intr[1, 2] -= offset_y |
|
|
|
|
|
tgt_hw_size, ratio_y, ratio_x = self.calc_new_tgt_size_by_aspect(cur_hw=rgb.shape[:2], |
|
aspect_standard=aspect_standard, |
|
tgt_size=render_tgt_size, multiply=multiply) |
|
rgb = cv2.resize(rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=interpolation) |
|
mask = cv2.resize(mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=interpolation) |
|
intr = self.scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y) |
|
|
|
assert abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5, f"{intr[0, 2] * 2}, {rgb.shape[1]}" |
|
assert abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5, f"{intr[1, 2] * 2}, {rgb.shape[0]}" |
|
intr[0, 2] = rgb.shape[1] // 2 |
|
intr[1, 2] = rgb.shape[0] // 2 |
|
|
|
rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0) |
|
mask = torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0) |
|
|
|
return rgb, mask, intr |
|
|
|
def scale_intrs(self, intrs, ratio_x, ratio_y): |
|
if len(intrs.shape) >= 3: |
|
intrs[:, 0] = intrs[:, 0] * ratio_x |
|
intrs[:, 1] = intrs[:, 1] * ratio_y |
|
else: |
|
intrs[0] = intrs[0] * ratio_x |
|
intrs[1] = intrs[1] * ratio_y |
|
return intrs |
|
|
|
def uniform_sample_in_chunk(self, sample_num, sample_data): |
|
chunks = np.array_split(sample_data, sample_num) |
|
select_list = [] |
|
for chunk in chunks: |
|
select_list.append(np.random.choice(chunk)) |
|
return select_list |
|
|
|
def uniform_sample_in_chunk_det(self, sample_num, sample_data): |
|
chunks = np.array_split(sample_data, sample_num) |
|
select_list = [] |
|
for chunk in chunks: |
|
select_list.append(chunk[len(chunk)//2]) |
|
return select_list |
|
|
|
def calc_new_tgt_size(self, cur_hw, tgt_size, multiply): |
|
ratio = tgt_size / min(cur_hw) |
|
tgt_size = int(ratio * cur_hw[0]), int(ratio * cur_hw[1]) |
|
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply |
|
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1] |
|
return tgt_size, ratio_y, ratio_x |
|
|
|
def calc_new_tgt_size_by_aspect(self, cur_hw, aspect_standard, tgt_size, multiply): |
|
assert abs(cur_hw[0] / cur_hw[1] - aspect_standard) < 0.03 |
|
tgt_size = tgt_size * aspect_standard, tgt_size |
|
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply |
|
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1] |
|
return tgt_size, ratio_y, ratio_x |
|
|
|
def load_flame_params(self, flame_file_path, teeth_bs=None): |
|
|
|
flame_param = dict(np.load(flame_file_path), allow_pickle=True) |
|
|
|
flame_param_tensor = {} |
|
flame_param_tensor['expr'] = torch.FloatTensor(flame_param['expr'])[0] |
|
flame_param_tensor['rotation'] = torch.FloatTensor(flame_param['rotation'])[0] |
|
flame_param_tensor['neck_pose'] = torch.FloatTensor(flame_param['neck_pose'])[0] |
|
flame_param_tensor['jaw_pose'] = torch.FloatTensor(flame_param['jaw_pose'])[0] |
|
flame_param_tensor['eyes_pose'] = torch.FloatTensor(flame_param['eyes_pose'])[0] |
|
flame_param_tensor['translation'] = torch.FloatTensor(flame_param['translation'])[0] |
|
if teeth_bs is not None: |
|
flame_param_tensor['teeth_bs'] = torch.FloatTensor(teeth_bs) |
|
|
|
|
|
return flame_param_tensor |
|
|
|
@no_proxy |
|
def inner_get_item(self, idx): |
|
""" |
|
Loaded contents: |
|
rgbs: [M, 3, H, W] |
|
poses: [M, 3, 4], [R|t] |
|
intrinsics: [3, 2], [[fx, fy], [cx, cy], [weight, height]] |
|
""" |
|
crop_ratio_h, crop_ratio_w = self.crop_range_ratio_hw |
|
|
|
uid = self.uids[idx] |
|
if len(uid.split('/')) == 1: |
|
uid = os.path.join(self.root_dirs, uid) |
|
mode_str = "train" if not self.is_val else "test" |
|
transforms_json = os.path.join(uid, f"transforms_{mode_str}.json") |
|
|
|
with open(transforms_json) as fp: |
|
data = json.load(fp) |
|
cor_flame_path = transforms_json.replace('transforms_{}.json'.format(mode_str),'canonical_flame_param.npz') |
|
flame_param = np.load(cor_flame_path) |
|
shape_param = torch.FloatTensor(flame_param['shape']) |
|
|
|
|
|
all_frames = data["frames"] |
|
|
|
sample_total_views = self.sample_side_views + 1 |
|
if len(all_frames) >= self.sample_side_views: |
|
if not self.is_val: |
|
if np.random.rand() < 0.7 and len(all_frames) > sample_total_views: |
|
frame_id_list = self.uniform_sample_in_chunk(sample_total_views, np.arange(len(all_frames))) |
|
else: |
|
replace = len(all_frames) < sample_total_views |
|
frame_id_list = np.random.choice(len(all_frames), size=sample_total_views, replace=replace) |
|
else: |
|
if len(all_frames) > sample_total_views: |
|
frame_id_list = self.uniform_sample_in_chunk_det(sample_total_views, np.arange(len(all_frames))) |
|
else: |
|
frame_id_list = np.random.choice(len(all_frames), size=sample_total_views, replace=True) |
|
else: |
|
if not self.is_val: |
|
replace = len(all_frames) < sample_total_views |
|
frame_id_list = np.random.choice(len(all_frames), size=sample_total_views, replace=replace) |
|
else: |
|
if len(all_frames) > 1: |
|
frame_id_list = np.linspace(0, len(all_frames) - 1, num=sample_total_views, endpoint=True) |
|
frame_id_list = [round(e) for e in frame_id_list] |
|
else: |
|
frame_id_list = [0 for i in range(sample_total_views)] |
|
|
|
cam_id_list = frame_id_list |
|
|
|
assert self.sample_side_views + 1 == len(frame_id_list) |
|
|
|
|
|
c2ws, intrs, rgbs, bg_colors, masks = [], [], [], [], [] |
|
flame_params = [] |
|
teeth_bs_pth = os.path.join(uid, "tracked_teeth_bs.npz") |
|
use_teeth = False |
|
if os.path.exists(teeth_bs_pth) and use_teeth: |
|
teeth_bs_lst = np.load(teeth_bs_pth)['expr_teeth'] |
|
else: |
|
teeth_bs_lst = None |
|
for cam_id, frame_id in zip(cam_id_list, frame_id_list): |
|
frame_info = all_frames[frame_id] |
|
frame_path = os.path.join(uid, frame_info["file_path"]) |
|
if 'nersemble' in frame_path or "tiktok_v34" in frame_path: |
|
mask_path = os.path.join(uid, frame_info["fg_mask_path"]) |
|
else: |
|
mask_path = os.path.join(uid, frame_info["fg_mask_path"]).replace("/export/", "/mask/").replace("/fg_masks/", "/mask/").replace(".png", ".jpg") |
|
if not os.path.exists(mask_path): |
|
mask_path = os.path.join(uid, frame_info["fg_mask_path"]) |
|
|
|
teeth_bs = teeth_bs_lst[frame_id] if teeth_bs_lst is not None else None |
|
flame_path = os.path.join(uid, frame_info["flame_param_path"]) |
|
flame_param = self.load_flame_params(flame_path, teeth_bs) |
|
|
|
|
|
|
|
|
|
c2w, ori_intrinsic = self._load_pose(frame_info, transpose_R="nersemble" in frame_path) |
|
|
|
bg_color = random.choice([0.0, 0.5, 1.0]) |
|
|
|
|
|
rgb, mask, intrinsic = self.load_rgb_image_with_aug_bg(frame_path, mask_path=mask_path, |
|
bg_color=bg_color, |
|
pad_ratio=0, |
|
max_tgt_size=None, |
|
aspect_standard=self.aspect_standard, |
|
enlarge_ratio=self.enlarge_ratio if (not self.is_val) or ("nersemble" in frame_path) else [1.0, 1.0], |
|
render_tgt_size=self.render_image_res, |
|
multiply=16, |
|
intr=ori_intrinsic.clone()) |
|
c2ws.append(c2w) |
|
rgbs.append(rgb) |
|
bg_colors.append(bg_color) |
|
intrs.append(intrinsic) |
|
flame_params.append(flame_param) |
|
masks.append(mask) |
|
|
|
c2ws = torch.stack(c2ws, dim=0) |
|
intrs = torch.stack(intrs, dim=0) |
|
rgbs = torch.cat(rgbs, dim=0) |
|
bg_colors = torch.tensor(bg_colors, dtype=torch.float32).unsqueeze(-1).repeat(1, 3) |
|
masks = torch.cat(masks, dim=0) |
|
|
|
flame_params_tmp = defaultdict(list) |
|
for flame in flame_params: |
|
for k, v in flame.items(): |
|
flame_params_tmp[k].append(v) |
|
for k, v in flame_params_tmp.items(): |
|
flame_params_tmp[k] = torch.stack(v) |
|
flame_params = flame_params_tmp |
|
|
|
flame_params["betas"] = shape_param |
|
|
|
|
|
prob_refidx = np.ones(self.sample_side_views + 1) |
|
if not self.is_val: |
|
prob_refidx[0] = 0.5 |
|
else: |
|
prob_refidx[0] = 1.0 |
|
|
|
prob_refidx[1:] = (1 - prob_refidx[0]) / len(prob_refidx[1:]) |
|
ref_idx = np.random.choice(self.sample_side_views + 1, p=prob_refidx) |
|
cam_id_source_list = cam_id_list[ref_idx: ref_idx + 1] |
|
frame_id_source_list = frame_id_list[ref_idx: ref_idx + 1] |
|
|
|
source_c2ws, source_intrs, source_rgbs, source_flame_params = [], [], [], [] |
|
for cam_id, frame_id in zip(cam_id_source_list, frame_id_source_list): |
|
frame_info = all_frames[frame_id] |
|
frame_path = os.path.join(uid, frame_info["file_path"]) |
|
if 'nersemble' in frame_path: |
|
mask_path = os.path.join(uid, frame_info["fg_mask_path"]) |
|
else: |
|
mask_path = os.path.join(uid, frame_info["fg_mask_path"]).replace("/export/", "/mask/").replace("/fg_masks/", "/mask/").replace(".png", ".jpg") |
|
flame_path = os.path.join(uid, frame_info["flame_param_path"]) |
|
|
|
teeth_bs = teeth_bs_lst[frame_id] if teeth_bs_lst is not None else None |
|
flame_param = self.load_flame_params(flame_path, teeth_bs) |
|
|
|
c2w, ori_intrinsic = self._load_pose(frame_info) |
|
|
|
|
|
|
|
bg_color = random.choice([0.0, 0.5, 1.0]) |
|
rgb, mask, intrinsic = self.load_rgb_image_with_aug_bg(frame_path, mask_path=mask_path, |
|
bg_color=bg_color, |
|
pad_ratio=0, |
|
max_tgt_size=None, |
|
aspect_standard=self.aspect_standard, |
|
enlarge_ratio=self.enlarge_ratio if (not self.is_val) or ("nersemble" in frame_path) else [1.0, 1.0], |
|
render_tgt_size=self.source_image_res, |
|
multiply=self.multiply, |
|
intr=ori_intrinsic.clone()) |
|
|
|
source_c2ws.append(c2w) |
|
source_intrs.append(intrinsic) |
|
source_rgbs.append(rgb) |
|
source_flame_params.append(flame_param) |
|
|
|
source_c2ws = torch.stack(source_c2ws, dim=0) |
|
source_intrs = torch.stack(source_intrs, dim=0) |
|
source_rgbs = torch.cat(source_rgbs, dim=0) |
|
|
|
flame_params_tmp = defaultdict(list) |
|
for flame in source_flame_params: |
|
for k, v in flame.items(): |
|
flame_params_tmp['source_'+k].append(v) |
|
for k, v in flame_params_tmp.items(): |
|
flame_params_tmp[k] = torch.stack(v) |
|
source_flame_params = flame_params_tmp |
|
|
|
source_flame_params["source_betas"] = shape_param |
|
|
|
render_image = rgbs |
|
render_mask = masks |
|
tgt_size = render_image.shape[2:4] |
|
assert abs(intrs[0, 0, 2] * 2 - render_image.shape[3]) <= 1.1, f"{intrs[0, 0, 2] * 2}, {render_image.shape}" |
|
assert abs(intrs[0, 1, 2] * 2 - render_image.shape[2]) <= 1.1, f"{intrs[0, 1, 2] * 2}, {render_image.shape}" |
|
|
|
ret = { |
|
'uid': uid, |
|
'source_c2ws': source_c2ws, |
|
'source_intrs': source_intrs, |
|
'source_rgbs': source_rgbs.clamp(0, 1), |
|
'render_image': render_image.clamp(0, 1), |
|
'render_mask': render_mask.clamp(0, 1), |
|
'c2ws': c2ws, |
|
'intrs': intrs, |
|
'render_full_resolutions': torch.tensor([tgt_size], dtype=torch.float32).repeat(self.sample_side_views + 1, 1), |
|
'render_bg_colors': bg_colors, |
|
'pytorch3d_transpose_R': torch.Tensor(["nersemble" in frame_path]), |
|
} |
|
|
|
|
|
|
|
ret.update(flame_params) |
|
ret.update(source_flame_params) |
|
|
|
return ret |
|
|
|
def gen_valid_id_json(): |
|
root_dir = "./train_data/vfhq_vhap/export" |
|
save_path = "./train_data/vfhq_vhap/label/valid_id_list.json" |
|
os.makedirs(os.path.dirname(save_path), exist_ok=True) |
|
valid_id_list = [] |
|
for file in os.listdir(root_dir): |
|
if not file.startswith("."): |
|
valid_id_list.append(file) |
|
print(len(valid_id_list), valid_id_list[:2]) |
|
with open(save_path, "w") as fp: |
|
json.dump(valid_id_list, fp) |
|
|
|
|
|
def gen_valid_id_json(): |
|
root_dir = "./train_data/vfhq_vhap/export" |
|
mask_root_dir = "./train_data/vfhq_vhap/mask" |
|
save_path = "./train_data/vfhq_vhap/label/valid_id_list.json" |
|
os.makedirs(os.path.dirname(save_path), exist_ok=True) |
|
valid_id_list = [] |
|
for file in os.listdir(root_dir): |
|
if not file.startswith(".") and ".txt" not in file: |
|
valid_id_list.append(file) |
|
print("raw:", len(valid_id_list), valid_id_list[:2]) |
|
|
|
mask_valid_id_list = [] |
|
for file in os.listdir(mask_root_dir): |
|
if not file.startswith(".") and ".txt" not in file: |
|
mask_valid_id_list.append(file) |
|
print("mask:", len(mask_valid_id_list), mask_valid_id_list[:2]) |
|
|
|
valid_id_list = list(set(valid_id_list).intersection(set(mask_valid_id_list))) |
|
print("intesection:", len(mask_valid_id_list), mask_valid_id_list[:2]) |
|
|
|
with open(save_path, "w") as fp: |
|
json.dump(valid_id_list, fp) |
|
|
|
save_train_path = "./train_data/vfhq_vhap/label/valid_id_train_list.json" |
|
save_val_path = "./train_data/vfhq_vhap/label/valid_id_val_list.json" |
|
valid_id_list = sorted(valid_id_list) |
|
idxs = np.linspace(0, len(valid_id_list)-1, num=20, endpoint=True).astype(np.int64) |
|
valid_id_train_list = [] |
|
valid_id_val_list = [] |
|
for i in range(len(valid_id_list)): |
|
if i in idxs: |
|
valid_id_val_list.append(valid_id_list[i]) |
|
else: |
|
valid_id_train_list.append(valid_id_list[i]) |
|
|
|
print(len(valid_id_train_list), len(valid_id_val_list), valid_id_val_list) |
|
with open(save_train_path, "w") as fp: |
|
json.dump(valid_id_train_list, fp) |
|
|
|
with open(save_val_path, "w") as fp: |
|
json.dump(valid_id_val_list, fp) |
|
|
|
|
|
if __name__ == "__main__": |
|
import trimesh |
|
import cv2 |
|
root_dir = "./train_data/vfhq_vhap/export" |
|
meta_path = "./train_data/vfhq_vhap/label/valid_id_list.json" |
|
dataset = VideoHeadDataset(root_dirs=root_dir, meta_path=meta_path, sample_side_views=15, |
|
render_image_res_low=512, render_image_res_high=512, |
|
render_region_size=(512, 512), source_image_res=512, |
|
enlarge_ratio=[0.8, 1.2], |
|
debug=False, is_val=False) |
|
|
|
from lam.models.rendering.flame_model.flame import FlameHeadSubdivided |
|
|
|
|
|
subdivide = 2 |
|
flame_sub_model = FlameHeadSubdivided( |
|
300, |
|
100, |
|
add_teeth=True, |
|
add_shoulder=False, |
|
flame_model_path='pretrained_models/human_model_files/flame_assets/flame/flame2023.pkl', |
|
flame_lmk_embedding_path="pretrained_models/human_model_files/flame_assets/flame/landmark_embedding_with_eyes.npy", |
|
flame_template_mesh_path="pretrained_models/human_model_files/flame_assets/flame/head_template_mesh.obj", |
|
flame_parts_path="pretrained_models/human_model_files/flame_assets/flame/FLAME_masks.pkl", |
|
subdivide_num=subdivide, |
|
teeth_bs_flag=False, |
|
).cuda() |
|
|
|
source_key = "source_rgbs" |
|
render_key = "render_image" |
|
|
|
for idx, data in enumerate(dataset): |
|
import boxx |
|
boxx.tree(data) |
|
if idx > 0: |
|
exit(0) |
|
os.makedirs("debug_vis/dataloader", exist_ok=True) |
|
for i in range(data[source_key].shape[0]): |
|
cv2.imwrite(f"debug_vis/dataloader/{source_key}_{i}_b{idx}.jpg", ((data[source_key][i].permute(1, 2, 0).numpy()[:, :, (2, 1, 0)] * 255).astype(np.uint8))) |
|
|
|
for i in range(data[render_key].shape[0]): |
|
cv2.imwrite(f"debug_vis/dataloader/rgbs{i}_b{idx}.jpg", ((data[render_key][i].permute(1, 2, 0).numpy()[:, :, (2, 1, 0)] * 255).astype(np.uint8))) |
|
|
|
|
|
save_root = "./debug_vis/dataloader" |
|
os.makedirs(save_root, exist_ok=True) |
|
|
|
shape = data['betas'].to('cuda') |
|
flame_param = {} |
|
flame_param['expr'] = data['expr'].to('cuda') |
|
flame_param['rotation'] = data['rotation'].to('cuda') |
|
flame_param['neck'] = data['neck_pose'].to('cuda') |
|
flame_param['jaw'] = data['jaw_pose'].to('cuda') |
|
flame_param['eyes'] = data['eyes_pose'].to('cuda') |
|
flame_param['translation'] = data['translation'].to('cuda') |
|
|
|
|
|
v_cano = flame_sub_model.get_cano_verts( |
|
shape.unsqueeze(0) |
|
) |
|
ret = flame_sub_model.animation_forward( |
|
v_cano.repeat(flame_param['expr'].shape[0], 1, 1), |
|
shape.unsqueeze(0).repeat(flame_param['expr'].shape[0], 1), |
|
flame_param['expr'], |
|
flame_param['rotation'], |
|
flame_param['neck'], |
|
flame_param['jaw'], |
|
flame_param['eyes'], |
|
flame_param['translation'], |
|
zero_centered_at_root_node=False, |
|
return_landmarks=False, |
|
return_verts_cano=True, |
|
|
|
static_offset=None, |
|
) |
|
|
|
import boxx |
|
boxx.tree(data) |
|
boxx.tree(ret) |
|
|
|
for i in range(ret["animated"].shape[0]): |
|
mesh = trimesh.Trimesh() |
|
mesh.vertices = np.array(ret["animated"][i].cpu().squeeze()) |
|
mesh.faces = np.array(flame_sub_model.faces.cpu().squeeze()) |
|
mesh.export(f'{save_root}/animated_sub{subdivide}_{i}.obj') |
|
|
|
intr = data["intrs"][i] |
|
from lam.models.rendering.utils.vis_utils import render_mesh |
|
cam_param = {"focal": torch.tensor([intr[0, 0], intr[1, 1]]), |
|
"princpt": torch.tensor([intr[0, 2], intr[1, 2]])} |
|
render_shape = data[render_key].shape[2:] |
|
|
|
face = flame_sub_model.faces.cpu().squeeze().numpy() |
|
vertices = ret["animated"][i].cpu().squeeze() |
|
|
|
c2ws = data["c2ws"][i] |
|
w2cs = torch.inverse(c2ws) |
|
if data['pytorch3d_transpose_R'][0] > 0: |
|
R = w2cs[:3, :3].transpose(1, 0) |
|
else: |
|
R = w2cs[:3, :3] |
|
T = w2cs[:3, 3] |
|
vertices = vertices @ R + T |
|
mesh_render, is_bkg = render_mesh(vertices, face, cam_param=cam_param, |
|
bkg=np.ones((render_shape[0],render_shape[1], 3), dtype=np.float32) * 255, |
|
return_bg_mask=True) |
|
|
|
rgb_mesh = mesh_render.astype(np.uint8) |
|
t_image = (data[render_key][i].permute(1, 2, 0)*255).numpy().astype(np.uint8) |
|
|
|
blend_ratio = 0.7 |
|
vis_img = np.concatenate([rgb_mesh, t_image, (blend_ratio * rgb_mesh + (1 - blend_ratio) * t_image).astype(np.uint8)], axis=1) |
|
cam_idx = int(data.get('cam_idxs', [i for j in range(16)])[i]) |
|
|
|
cv2.imwrite(os.path.join(save_root, f"render_{cam_idx}.jpg"), vis_img[:, :, (2, 1, 0)]) |
|
|