LAM / lam /datasets /video_head.py
yuandong513
feat: init
17cd746
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
import os
import glob
from typing import Union
import random
import numpy as np
import torch
# from megfile import smart_path_join, smart_open
import json
from PIL import Image
import cv2
from lam.datasets.base import BaseDataset
from lam.datasets.cam_utils import build_camera_standard, build_camera_principle, camera_normalization_objaverse
from lam.utils.proxy import no_proxy
from typing import Optional, Union
__all__ = ['VideoHeadDataset']
class VideoHeadDataset(BaseDataset):
def __init__(self, root_dirs: str, meta_path: Optional[Union[str, list]],
sample_side_views: int,
render_image_res_low: int, render_image_res_high: int, render_region_size: int,
source_image_res: int,
repeat_num=1,
crop_range_ratio_hw=[1.0, 1.0],
aspect_standard=1.0, # h/w
enlarge_ratio=[0.8, 1.2],
debug=False,
is_val=False,
**kwargs):
super().__init__(root_dirs, meta_path)
self.sample_side_views = sample_side_views
self.render_image_res_low = render_image_res_low
self.render_image_res_high = render_image_res_high
if not (isinstance(render_region_size, list) or isinstance(render_region_size, tuple)):
render_region_size = render_region_size, render_region_size # [H, W]
self.render_region_size = render_region_size
self.source_image_res = source_image_res
self.uids = self.uids * repeat_num
self.crop_range_ratio_hw = crop_range_ratio_hw
self.debug = debug
self.aspect_standard = aspect_standard
assert self.render_image_res_low == self.render_image_res_high
self.render_image_res = self.render_image_res_low
self.enlarge_ratio = enlarge_ratio
print(f"VideoHeadDataset, data_len:{len(self.uids)}, repeat_num:{repeat_num}, debug:{debug}, is_val:{is_val}")
self.multiply = kwargs.get("multiply", 14)
# set data deterministic
self.is_val = is_val
@staticmethod
def _load_pose(frame_info, transpose_R=False):
c2w = torch.eye(4)
c2w = np.array(frame_info["transform_matrix"])
c2w[:3, 1:3] *= -1
c2w = torch.FloatTensor(c2w)
"""
if transpose_R:
w2c = torch.inverse(c2w)
w2c[:3, :3] = w2c[:3, :3].transpose(1, 0).contiguous()
c2w = torch.inverse(w2c)
"""
intrinsic = torch.eye(4)
intrinsic[0, 0] = frame_info["fl_x"]
intrinsic[1, 1] = frame_info["fl_y"]
intrinsic[0, 2] = frame_info["cx"]
intrinsic[1, 2] = frame_info["cy"]
intrinsic = intrinsic.float()
return c2w, intrinsic
def img_center_padding(self, img_np, pad_ratio):
ori_w, ori_h = img_np.shape[:2]
w = round((1 + pad_ratio) * ori_w)
h = round((1 + pad_ratio) * ori_h)
if len(img_np.shape) > 2:
img_pad_np = np.zeros((w, h, img_np.shape[2]), dtype=np.uint8)
else:
img_pad_np = np.zeros((w, h), dtype=np.uint8)
offset_h, offset_w = (w - img_np.shape[0]) // 2, (h - img_np.shape[1]) // 2
img_pad_np[offset_h: offset_h + img_np.shape[0]:, offset_w: offset_w + img_np.shape[1]] = img_np
return img_pad_np
def resize_image_keepaspect_np(self, img, max_tgt_size):
"""
similar to ImageOps.contain(img_pil, (img_size, img_size)) # keep the same aspect ratio
"""
h, w = img.shape[:2]
ratio = max_tgt_size / max(h, w)
new_h, new_w = round(h * ratio), round(w * ratio)
return cv2.resize(img, dsize=(new_w, new_h), interpolation=cv2.INTER_AREA)
def center_crop_according_to_mask(self, img, mask, aspect_standard, enlarge_ratio):
"""
img: [H, W, 3]
mask: [H, W]
"""
ys, xs = np.where(mask > 0)
if len(xs) == 0 or len(ys) == 0:
raise Exception("empty mask")
x_min = np.min(xs)
x_max = np.max(xs)
y_min = np.min(ys)
y_max = np.max(ys)
center_x, center_y = img.shape[1]//2, img.shape[0]//2
half_w = max(abs(center_x - x_min), abs(center_x - x_max))
half_h = max(abs(center_y - y_min), abs(center_y - y_max))
aspect = half_h / half_w
if aspect >= aspect_standard:
half_w = round(half_h / aspect_standard)
else:
half_h = round(half_w * aspect_standard)
if abs(enlarge_ratio[0] - 1) > 0.01 or abs(enlarge_ratio[1] - 1) > 0.01:
enlarge_ratio_min, enlarge_ratio_max = enlarge_ratio
enlarge_ratio_max_real = min(center_y / half_h, center_x / half_w)
enlarge_ratio_max = min(enlarge_ratio_max_real, enlarge_ratio_max)
enlarge_ratio_min = min(enlarge_ratio_max_real, enlarge_ratio_min)
enlarge_ratio_cur = np.random.rand() * (enlarge_ratio_max - enlarge_ratio_min) + enlarge_ratio_min
half_h, half_w = round(enlarge_ratio_cur * half_h), round(enlarge_ratio_cur * half_w)
assert half_h <= center_y
assert half_w <= center_x
assert abs(half_h / half_w - aspect_standard) < 0.03
offset_x = center_x - half_w
offset_y = center_y - half_h
new_img = img[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w]
new_mask = mask[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w]
return new_img, new_mask, offset_x, offset_y
def load_rgb_image_with_aug_bg(self, rgb_path, mask_path, bg_color, pad_ratio, max_tgt_size, aspect_standard, enlarge_ratio,
render_tgt_size, multiply, intr):
rgb = np.array(Image.open(rgb_path))
interpolation = cv2.INTER_AREA
if rgb.shape[0] != 1024 and rgb.shape[0] == rgb.shape[1]:
rgb = cv2.resize(rgb, (1024, 1024), interpolation=interpolation)
if pad_ratio > 0:
rgb = self.img_center_padding(rgb, pad_ratio)
rgb = rgb / 255.0
if mask_path is not None:
if os.path.exists(mask_path):
mask = np.array(Image.open(mask_path)) > 180
if len(mask.shape) == 3:
mask = mask[..., 0]
assert pad_ratio == 0
# if pad_ratio > 0:
# mask = self.img_center_padding(mask, pad_ratio)
# mask = mask / 255.0
else:
# print("no mask file")
mask = (rgb >= 0.99).sum(axis=2) == 3
mask = np.logical_not(mask)
# erode
mask = (mask * 255).astype(np.uint8)
kernel_size, iterations = 3, 7
kernel = np.ones((kernel_size, kernel_size), np.uint8)
mask = cv2.erode(mask, kernel, iterations=iterations) / 255.0
else:
# rgb: [H, W, 4]
assert rgb.shape[2] == 4
mask = rgb[:, :, 3] # [H, W]
if len(mask.shape) > 2:
mask = mask[:, :, 0]
mask = (mask > 0.5).astype(np.float32)
rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None])
# crop image to enlarge face area.
try:
rgb, mask, offset_x, offset_y = self.center_crop_according_to_mask(rgb, mask, aspect_standard, enlarge_ratio)
except Exception as ex:
print(rgb_path, mask_path, ex)
intr[0, 2] -= offset_x
intr[1, 2] -= offset_y
# resize to render_tgt_size for training
tgt_hw_size, ratio_y, ratio_x = self.calc_new_tgt_size_by_aspect(cur_hw=rgb.shape[:2],
aspect_standard=aspect_standard,
tgt_size=render_tgt_size, multiply=multiply)
rgb = cv2.resize(rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=interpolation)
mask = cv2.resize(mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=interpolation)
intr = self.scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y)
assert abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5, f"{intr[0, 2] * 2}, {rgb.shape[1]}"
assert abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5, f"{intr[1, 2] * 2}, {rgb.shape[0]}"
intr[0, 2] = rgb.shape[1] // 2
intr[1, 2] = rgb.shape[0] // 2
rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0)
mask = torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0)
return rgb, mask, intr
def scale_intrs(self, intrs, ratio_x, ratio_y):
if len(intrs.shape) >= 3:
intrs[:, 0] = intrs[:, 0] * ratio_x
intrs[:, 1] = intrs[:, 1] * ratio_y
else:
intrs[0] = intrs[0] * ratio_x
intrs[1] = intrs[1] * ratio_y
return intrs
def uniform_sample_in_chunk(self, sample_num, sample_data):
chunks = np.array_split(sample_data, sample_num)
select_list = []
for chunk in chunks:
select_list.append(np.random.choice(chunk))
return select_list
def uniform_sample_in_chunk_det(self, sample_num, sample_data):
chunks = np.array_split(sample_data, sample_num)
select_list = []
for chunk in chunks:
select_list.append(chunk[len(chunk)//2])
return select_list
def calc_new_tgt_size(self, cur_hw, tgt_size, multiply):
ratio = tgt_size / min(cur_hw)
tgt_size = int(ratio * cur_hw[0]), int(ratio * cur_hw[1])
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1]
return tgt_size, ratio_y, ratio_x
def calc_new_tgt_size_by_aspect(self, cur_hw, aspect_standard, tgt_size, multiply):
assert abs(cur_hw[0] / cur_hw[1] - aspect_standard) < 0.03
tgt_size = tgt_size * aspect_standard, tgt_size
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1]
return tgt_size, ratio_y, ratio_x
def load_flame_params(self, flame_file_path, teeth_bs=None):
flame_param = dict(np.load(flame_file_path), allow_pickle=True)
flame_param_tensor = {}
flame_param_tensor['expr'] = torch.FloatTensor(flame_param['expr'])[0]
flame_param_tensor['rotation'] = torch.FloatTensor(flame_param['rotation'])[0]
flame_param_tensor['neck_pose'] = torch.FloatTensor(flame_param['neck_pose'])[0]
flame_param_tensor['jaw_pose'] = torch.FloatTensor(flame_param['jaw_pose'])[0]
flame_param_tensor['eyes_pose'] = torch.FloatTensor(flame_param['eyes_pose'])[0]
flame_param_tensor['translation'] = torch.FloatTensor(flame_param['translation'])[0]
if teeth_bs is not None:
flame_param_tensor['teeth_bs'] = torch.FloatTensor(teeth_bs)
# flame_param_tensor['expr'] = torch.cat([flame_param_tensor['expr'], flame_param_tensor['teeth_bs']], dim=0)
return flame_param_tensor
@no_proxy
def inner_get_item(self, idx):
"""
Loaded contents:
rgbs: [M, 3, H, W]
poses: [M, 3, 4], [R|t]
intrinsics: [3, 2], [[fx, fy], [cx, cy], [weight, height]]
"""
crop_ratio_h, crop_ratio_w = self.crop_range_ratio_hw
uid = self.uids[idx]
if len(uid.split('/')) == 1:
uid = os.path.join(self.root_dirs, uid)
mode_str = "train" if not self.is_val else "test"
transforms_json = os.path.join(uid, f"transforms_{mode_str}.json")
with open(transforms_json) as fp:
data = json.load(fp)
cor_flame_path = transforms_json.replace('transforms_{}.json'.format(mode_str),'canonical_flame_param.npz')
flame_param = np.load(cor_flame_path)
shape_param = torch.FloatTensor(flame_param['shape'])
# data['static_offset'] = flame_param['static_offset']
all_frames = data["frames"]
sample_total_views = self.sample_side_views + 1
if len(all_frames) >= self.sample_side_views:
if not self.is_val:
if np.random.rand() < 0.7 and len(all_frames) > sample_total_views:
frame_id_list = self.uniform_sample_in_chunk(sample_total_views, np.arange(len(all_frames)))
else:
replace = len(all_frames) < sample_total_views
frame_id_list = np.random.choice(len(all_frames), size=sample_total_views, replace=replace)
else:
if len(all_frames) > sample_total_views:
frame_id_list = self.uniform_sample_in_chunk_det(sample_total_views, np.arange(len(all_frames)))
else:
frame_id_list = np.random.choice(len(all_frames), size=sample_total_views, replace=True)
else:
if not self.is_val:
replace = len(all_frames) < sample_total_views
frame_id_list = np.random.choice(len(all_frames), size=sample_total_views, replace=replace)
else:
if len(all_frames) > 1:
frame_id_list = np.linspace(0, len(all_frames) - 1, num=sample_total_views, endpoint=True)
frame_id_list = [round(e) for e in frame_id_list]
else:
frame_id_list = [0 for i in range(sample_total_views)]
cam_id_list = frame_id_list
assert self.sample_side_views + 1 == len(frame_id_list)
# source images
c2ws, intrs, rgbs, bg_colors, masks = [], [], [], [], []
flame_params = []
teeth_bs_pth = os.path.join(uid, "tracked_teeth_bs.npz")
use_teeth = False
if os.path.exists(teeth_bs_pth) and use_teeth:
teeth_bs_lst = np.load(teeth_bs_pth)['expr_teeth']
else:
teeth_bs_lst = None
for cam_id, frame_id in zip(cam_id_list, frame_id_list):
frame_info = all_frames[frame_id]
frame_path = os.path.join(uid, frame_info["file_path"])
if 'nersemble' in frame_path or "tiktok_v34" in frame_path:
mask_path = os.path.join(uid, frame_info["fg_mask_path"])
else:
mask_path = os.path.join(uid, frame_info["fg_mask_path"]).replace("/export/", "/mask/").replace("/fg_masks/", "/mask/").replace(".png", ".jpg")
if not os.path.exists(mask_path):
mask_path = os.path.join(uid, frame_info["fg_mask_path"])
teeth_bs = teeth_bs_lst[frame_id] if teeth_bs_lst is not None else None
flame_path = os.path.join(uid, frame_info["flame_param_path"])
flame_param = self.load_flame_params(flame_path, teeth_bs)
# if cam_id == 0:
# shape_param = flame_param["betas"]
c2w, ori_intrinsic = self._load_pose(frame_info, transpose_R="nersemble" in frame_path)
bg_color = random.choice([0.0, 0.5, 1.0]) # 1.0
# if self.is_val:
# bg_color = 1.0
rgb, mask, intrinsic = self.load_rgb_image_with_aug_bg(frame_path, mask_path=mask_path,
bg_color=bg_color,
pad_ratio=0,
max_tgt_size=None,
aspect_standard=self.aspect_standard,
enlarge_ratio=self.enlarge_ratio if (not self.is_val) or ("nersemble" in frame_path) else [1.0, 1.0],
render_tgt_size=self.render_image_res,
multiply=16,
intr=ori_intrinsic.clone())
c2ws.append(c2w)
rgbs.append(rgb)
bg_colors.append(bg_color)
intrs.append(intrinsic)
flame_params.append(flame_param)
masks.append(mask)
c2ws = torch.stack(c2ws, dim=0) # [N, 4, 4]
intrs = torch.stack(intrs, dim=0) # [N, 4, 4]
rgbs = torch.cat(rgbs, dim=0) # [N, 3, H, W]
bg_colors = torch.tensor(bg_colors, dtype=torch.float32).unsqueeze(-1).repeat(1, 3) # [N, 3]
masks = torch.cat(masks, dim=0) # [N, 1, H, W]
flame_params_tmp = defaultdict(list)
for flame in flame_params:
for k, v in flame.items():
flame_params_tmp[k].append(v)
for k, v in flame_params_tmp.items():
flame_params_tmp[k] = torch.stack(v)
flame_params = flame_params_tmp
# TODO check different betas for same person
flame_params["betas"] = shape_param
# reference images
prob_refidx = np.ones(self.sample_side_views + 1)
if not self.is_val:
prob_refidx[0] = 0.5 # front_prob
else:
prob_refidx[0] = 1.0
# print(frame_id_list, kinect_color_list, prob_refidx[0])
prob_refidx[1:] = (1 - prob_refidx[0]) / len(prob_refidx[1:])
ref_idx = np.random.choice(self.sample_side_views + 1, p=prob_refidx)
cam_id_source_list = cam_id_list[ref_idx: ref_idx + 1]
frame_id_source_list = frame_id_list[ref_idx: ref_idx + 1]
source_c2ws, source_intrs, source_rgbs, source_flame_params = [], [], [], []
for cam_id, frame_id in zip(cam_id_source_list, frame_id_source_list):
frame_info = all_frames[frame_id]
frame_path = os.path.join(uid, frame_info["file_path"])
if 'nersemble' in frame_path:
mask_path = os.path.join(uid, frame_info["fg_mask_path"])
else:
mask_path = os.path.join(uid, frame_info["fg_mask_path"]).replace("/export/", "/mask/").replace("/fg_masks/", "/mask/").replace(".png", ".jpg")
flame_path = os.path.join(uid, frame_info["flame_param_path"])
teeth_bs = teeth_bs_lst[frame_id] if teeth_bs_lst is not None else None
flame_param = self.load_flame_params(flame_path, teeth_bs)
c2w, ori_intrinsic = self._load_pose(frame_info)
# bg_color = 1.0
# bg_color = 0.0
bg_color = random.choice([0.0, 0.5, 1.0]) # 1.
rgb, mask, intrinsic = self.load_rgb_image_with_aug_bg(frame_path, mask_path=mask_path,
bg_color=bg_color,
pad_ratio=0,
max_tgt_size=None,
aspect_standard=self.aspect_standard,
enlarge_ratio=self.enlarge_ratio if (not self.is_val) or ("nersemble" in frame_path) else [1.0, 1.0],
render_tgt_size=self.source_image_res,
multiply=self.multiply,
intr=ori_intrinsic.clone())
source_c2ws.append(c2w)
source_intrs.append(intrinsic)
source_rgbs.append(rgb)
source_flame_params.append(flame_param)
source_c2ws = torch.stack(source_c2ws, dim=0)
source_intrs = torch.stack(source_intrs, dim=0)
source_rgbs = torch.cat(source_rgbs, dim=0)
flame_params_tmp = defaultdict(list)
for flame in source_flame_params:
for k, v in flame.items():
flame_params_tmp['source_'+k].append(v)
for k, v in flame_params_tmp.items():
flame_params_tmp[k] = torch.stack(v)
source_flame_params = flame_params_tmp
# TODO check different betas for same person
source_flame_params["source_betas"] = shape_param
render_image = rgbs
render_mask = masks
tgt_size = render_image.shape[2:4] # [H, W]
assert abs(intrs[0, 0, 2] * 2 - render_image.shape[3]) <= 1.1, f"{intrs[0, 0, 2] * 2}, {render_image.shape}"
assert abs(intrs[0, 1, 2] * 2 - render_image.shape[2]) <= 1.1, f"{intrs[0, 1, 2] * 2}, {render_image.shape}"
ret = {
'uid': uid,
'source_c2ws': source_c2ws, # [N1, 4, 4]
'source_intrs': source_intrs, # [N1, 4, 4]
'source_rgbs': source_rgbs.clamp(0, 1), # [N1, 3, H, W]
'render_image': render_image.clamp(0, 1), # [N, 3, H, W]
'render_mask': render_mask.clamp(0, 1), #[ N, 1, H, W]
'c2ws': c2ws, # [N, 4, 4]
'intrs': intrs, # [N, 4, 4]
'render_full_resolutions': torch.tensor([tgt_size], dtype=torch.float32).repeat(self.sample_side_views + 1, 1), # [N, 2]
'render_bg_colors': bg_colors, # [N, 3]
'pytorch3d_transpose_R': torch.Tensor(["nersemble" in frame_path]), # [1]
}
#['root_pose', 'body_pose', 'jaw_pose', 'leye_pose', 'reye_pose', 'lhand_pose', 'rhand_pose', 'expr', 'trans', 'betas']
# 'flame_params': flame_params, # dict: body_pose:[N, 21, 3],
ret.update(flame_params)
ret.update(source_flame_params)
return ret
def gen_valid_id_json():
root_dir = "./train_data/vfhq_vhap/export"
save_path = "./train_data/vfhq_vhap/label/valid_id_list.json"
os.makedirs(os.path.dirname(save_path), exist_ok=True)
valid_id_list = []
for file in os.listdir(root_dir):
if not file.startswith("."):
valid_id_list.append(file)
print(len(valid_id_list), valid_id_list[:2])
with open(save_path, "w") as fp:
json.dump(valid_id_list, fp)
def gen_valid_id_json():
root_dir = "./train_data/vfhq_vhap/export"
mask_root_dir = "./train_data/vfhq_vhap/mask"
save_path = "./train_data/vfhq_vhap/label/valid_id_list.json"
os.makedirs(os.path.dirname(save_path), exist_ok=True)
valid_id_list = []
for file in os.listdir(root_dir):
if not file.startswith(".") and ".txt" not in file:
valid_id_list.append(file)
print("raw:", len(valid_id_list), valid_id_list[:2])
mask_valid_id_list = []
for file in os.listdir(mask_root_dir):
if not file.startswith(".") and ".txt" not in file:
mask_valid_id_list.append(file)
print("mask:", len(mask_valid_id_list), mask_valid_id_list[:2])
valid_id_list = list(set(valid_id_list).intersection(set(mask_valid_id_list)))
print("intesection:", len(mask_valid_id_list), mask_valid_id_list[:2])
with open(save_path, "w") as fp:
json.dump(valid_id_list, fp)
save_train_path = "./train_data/vfhq_vhap/label/valid_id_train_list.json"
save_val_path = "./train_data/vfhq_vhap/label/valid_id_val_list.json"
valid_id_list = sorted(valid_id_list)
idxs = np.linspace(0, len(valid_id_list)-1, num=20, endpoint=True).astype(np.int64)
valid_id_train_list = []
valid_id_val_list = []
for i in range(len(valid_id_list)):
if i in idxs:
valid_id_val_list.append(valid_id_list[i])
else:
valid_id_train_list.append(valid_id_list[i])
print(len(valid_id_train_list), len(valid_id_val_list), valid_id_val_list)
with open(save_train_path, "w") as fp:
json.dump(valid_id_train_list, fp)
with open(save_val_path, "w") as fp:
json.dump(valid_id_val_list, fp)
if __name__ == "__main__":
import trimesh
import cv2
root_dir = "./train_data/vfhq_vhap/export"
meta_path = "./train_data/vfhq_vhap/label/valid_id_list.json"
dataset = VideoHeadDataset(root_dirs=root_dir, meta_path=meta_path, sample_side_views=15,
render_image_res_low=512, render_image_res_high=512,
render_region_size=(512, 512), source_image_res=512,
enlarge_ratio=[0.8, 1.2],
debug=False, is_val=False)
from lam.models.rendering.flame_model.flame import FlameHeadSubdivided
# subdivided flame
subdivide = 2
flame_sub_model = FlameHeadSubdivided(
300,
100,
add_teeth=True,
add_shoulder=False,
flame_model_path='pretrained_models/human_model_files/flame_assets/flame/flame2023.pkl',
flame_lmk_embedding_path="pretrained_models/human_model_files/flame_assets/flame/landmark_embedding_with_eyes.npy",
flame_template_mesh_path="pretrained_models/human_model_files/flame_assets/flame/head_template_mesh.obj",
flame_parts_path="pretrained_models/human_model_files/flame_assets/flame/FLAME_masks.pkl",
subdivide_num=subdivide,
teeth_bs_flag=False,
).cuda()
source_key = "source_rgbs"
render_key = "render_image"
for idx, data in enumerate(dataset):
import boxx
boxx.tree(data)
if idx > 0:
exit(0)
os.makedirs("debug_vis/dataloader", exist_ok=True)
for i in range(data[source_key].shape[0]):
cv2.imwrite(f"debug_vis/dataloader/{source_key}_{i}_b{idx}.jpg", ((data[source_key][i].permute(1, 2, 0).numpy()[:, :, (2, 1, 0)] * 255).astype(np.uint8)))
for i in range(data[render_key].shape[0]):
cv2.imwrite(f"debug_vis/dataloader/rgbs{i}_b{idx}.jpg", ((data[render_key][i].permute(1, 2, 0).numpy()[:, :, (2, 1, 0)] * 255).astype(np.uint8)))
save_root = "./debug_vis/dataloader"
os.makedirs(save_root, exist_ok=True)
shape = data['betas'].to('cuda')
flame_param = {}
flame_param['expr'] = data['expr'].to('cuda')
flame_param['rotation'] = data['rotation'].to('cuda')
flame_param['neck'] = data['neck_pose'].to('cuda')
flame_param['jaw'] = data['jaw_pose'].to('cuda')
flame_param['eyes'] = data['eyes_pose'].to('cuda')
flame_param['translation'] = data['translation'].to('cuda')
v_cano = flame_sub_model.get_cano_verts(
shape.unsqueeze(0)
)
ret = flame_sub_model.animation_forward(
v_cano.repeat(flame_param['expr'].shape[0], 1, 1),
shape.unsqueeze(0).repeat(flame_param['expr'].shape[0], 1),
flame_param['expr'],
flame_param['rotation'],
flame_param['neck'],
flame_param['jaw'],
flame_param['eyes'],
flame_param['translation'],
zero_centered_at_root_node=False,
return_landmarks=False,
return_verts_cano=True,
# static_offset=batch_data['static_offset'].to('cuda'),
static_offset=None,
)
import boxx
boxx.tree(data)
boxx.tree(ret)
for i in range(ret["animated"].shape[0]):
mesh = trimesh.Trimesh()
mesh.vertices = np.array(ret["animated"][i].cpu().squeeze())
mesh.faces = np.array(flame_sub_model.faces.cpu().squeeze())
mesh.export(f'{save_root}/animated_sub{subdivide}_{i}.obj')
intr = data["intrs"][i]
from lam.models.rendering.utils.vis_utils import render_mesh
cam_param = {"focal": torch.tensor([intr[0, 0], intr[1, 1]]),
"princpt": torch.tensor([intr[0, 2], intr[1, 2]])}
render_shape = data[render_key].shape[2:] # int(cam_param['princpt'][1]* 2), int(cam_param['princpt'][0] * 2)
face = flame_sub_model.faces.cpu().squeeze().numpy()
vertices = ret["animated"][i].cpu().squeeze()
c2ws = data["c2ws"][i]
w2cs = torch.inverse(c2ws)
if data['pytorch3d_transpose_R'][0] > 0:
R = w2cs[:3, :3].transpose(1, 0)
else:
R = w2cs[:3, :3]
T = w2cs[:3, 3]
vertices = vertices @ R + T
mesh_render, is_bkg = render_mesh(vertices, face, cam_param=cam_param,
bkg=np.ones((render_shape[0],render_shape[1], 3), dtype=np.float32) * 255,
return_bg_mask=True)
rgb_mesh = mesh_render.astype(np.uint8)
t_image = (data[render_key][i].permute(1, 2, 0)*255).numpy().astype(np.uint8)
blend_ratio = 0.7
vis_img = np.concatenate([rgb_mesh, t_image, (blend_ratio * rgb_mesh + (1 - blend_ratio) * t_image).astype(np.uint8)], axis=1)
cam_idx = int(data.get('cam_idxs', [i for j in range(16)])[i])
cv2.imwrite(os.path.join(save_root, f"render_{cam_idx}.jpg"), vis_img[:, :, (2, 1, 0)])