File size: 30,050 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
import os
import glob
from typing import Union
import random
import numpy as np
import torch
# from megfile import smart_path_join, smart_open
import json
from PIL import Image
import cv2
from lam.datasets.base import BaseDataset
from lam.datasets.cam_utils import build_camera_standard, build_camera_principle, camera_normalization_objaverse
from lam.utils.proxy import no_proxy
from typing import Optional, Union
__all__ = ['VideoHeadDataset']
class VideoHeadDataset(BaseDataset):
def __init__(self, root_dirs: str, meta_path: Optional[Union[str, list]],
sample_side_views: int,
render_image_res_low: int, render_image_res_high: int, render_region_size: int,
source_image_res: int,
repeat_num=1,
crop_range_ratio_hw=[1.0, 1.0],
aspect_standard=1.0, # h/w
enlarge_ratio=[0.8, 1.2],
debug=False,
is_val=False,
**kwargs):
super().__init__(root_dirs, meta_path)
self.sample_side_views = sample_side_views
self.render_image_res_low = render_image_res_low
self.render_image_res_high = render_image_res_high
if not (isinstance(render_region_size, list) or isinstance(render_region_size, tuple)):
render_region_size = render_region_size, render_region_size # [H, W]
self.render_region_size = render_region_size
self.source_image_res = source_image_res
self.uids = self.uids * repeat_num
self.crop_range_ratio_hw = crop_range_ratio_hw
self.debug = debug
self.aspect_standard = aspect_standard
assert self.render_image_res_low == self.render_image_res_high
self.render_image_res = self.render_image_res_low
self.enlarge_ratio = enlarge_ratio
print(f"VideoHeadDataset, data_len:{len(self.uids)}, repeat_num:{repeat_num}, debug:{debug}, is_val:{is_val}")
self.multiply = kwargs.get("multiply", 14)
# set data deterministic
self.is_val = is_val
@staticmethod
def _load_pose(frame_info, transpose_R=False):
c2w = torch.eye(4)
c2w = np.array(frame_info["transform_matrix"])
c2w[:3, 1:3] *= -1
c2w = torch.FloatTensor(c2w)
"""
if transpose_R:
w2c = torch.inverse(c2w)
w2c[:3, :3] = w2c[:3, :3].transpose(1, 0).contiguous()
c2w = torch.inverse(w2c)
"""
intrinsic = torch.eye(4)
intrinsic[0, 0] = frame_info["fl_x"]
intrinsic[1, 1] = frame_info["fl_y"]
intrinsic[0, 2] = frame_info["cx"]
intrinsic[1, 2] = frame_info["cy"]
intrinsic = intrinsic.float()
return c2w, intrinsic
def img_center_padding(self, img_np, pad_ratio):
ori_w, ori_h = img_np.shape[:2]
w = round((1 + pad_ratio) * ori_w)
h = round((1 + pad_ratio) * ori_h)
if len(img_np.shape) > 2:
img_pad_np = np.zeros((w, h, img_np.shape[2]), dtype=np.uint8)
else:
img_pad_np = np.zeros((w, h), dtype=np.uint8)
offset_h, offset_w = (w - img_np.shape[0]) // 2, (h - img_np.shape[1]) // 2
img_pad_np[offset_h: offset_h + img_np.shape[0]:, offset_w: offset_w + img_np.shape[1]] = img_np
return img_pad_np
def resize_image_keepaspect_np(self, img, max_tgt_size):
"""
similar to ImageOps.contain(img_pil, (img_size, img_size)) # keep the same aspect ratio
"""
h, w = img.shape[:2]
ratio = max_tgt_size / max(h, w)
new_h, new_w = round(h * ratio), round(w * ratio)
return cv2.resize(img, dsize=(new_w, new_h), interpolation=cv2.INTER_AREA)
def center_crop_according_to_mask(self, img, mask, aspect_standard, enlarge_ratio):
"""
img: [H, W, 3]
mask: [H, W]
"""
ys, xs = np.where(mask > 0)
if len(xs) == 0 or len(ys) == 0:
raise Exception("empty mask")
x_min = np.min(xs)
x_max = np.max(xs)
y_min = np.min(ys)
y_max = np.max(ys)
center_x, center_y = img.shape[1]//2, img.shape[0]//2
half_w = max(abs(center_x - x_min), abs(center_x - x_max))
half_h = max(abs(center_y - y_min), abs(center_y - y_max))
aspect = half_h / half_w
if aspect >= aspect_standard:
half_w = round(half_h / aspect_standard)
else:
half_h = round(half_w * aspect_standard)
if abs(enlarge_ratio[0] - 1) > 0.01 or abs(enlarge_ratio[1] - 1) > 0.01:
enlarge_ratio_min, enlarge_ratio_max = enlarge_ratio
enlarge_ratio_max_real = min(center_y / half_h, center_x / half_w)
enlarge_ratio_max = min(enlarge_ratio_max_real, enlarge_ratio_max)
enlarge_ratio_min = min(enlarge_ratio_max_real, enlarge_ratio_min)
enlarge_ratio_cur = np.random.rand() * (enlarge_ratio_max - enlarge_ratio_min) + enlarge_ratio_min
half_h, half_w = round(enlarge_ratio_cur * half_h), round(enlarge_ratio_cur * half_w)
assert half_h <= center_y
assert half_w <= center_x
assert abs(half_h / half_w - aspect_standard) < 0.03
offset_x = center_x - half_w
offset_y = center_y - half_h
new_img = img[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w]
new_mask = mask[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w]
return new_img, new_mask, offset_x, offset_y
def load_rgb_image_with_aug_bg(self, rgb_path, mask_path, bg_color, pad_ratio, max_tgt_size, aspect_standard, enlarge_ratio,
render_tgt_size, multiply, intr):
rgb = np.array(Image.open(rgb_path))
interpolation = cv2.INTER_AREA
if rgb.shape[0] != 1024 and rgb.shape[0] == rgb.shape[1]:
rgb = cv2.resize(rgb, (1024, 1024), interpolation=interpolation)
if pad_ratio > 0:
rgb = self.img_center_padding(rgb, pad_ratio)
rgb = rgb / 255.0
if mask_path is not None:
if os.path.exists(mask_path):
mask = np.array(Image.open(mask_path)) > 180
if len(mask.shape) == 3:
mask = mask[..., 0]
assert pad_ratio == 0
# if pad_ratio > 0:
# mask = self.img_center_padding(mask, pad_ratio)
# mask = mask / 255.0
else:
# print("no mask file")
mask = (rgb >= 0.99).sum(axis=2) == 3
mask = np.logical_not(mask)
# erode
mask = (mask * 255).astype(np.uint8)
kernel_size, iterations = 3, 7
kernel = np.ones((kernel_size, kernel_size), np.uint8)
mask = cv2.erode(mask, kernel, iterations=iterations) / 255.0
else:
# rgb: [H, W, 4]
assert rgb.shape[2] == 4
mask = rgb[:, :, 3] # [H, W]
if len(mask.shape) > 2:
mask = mask[:, :, 0]
mask = (mask > 0.5).astype(np.float32)
rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None])
# crop image to enlarge face area.
try:
rgb, mask, offset_x, offset_y = self.center_crop_according_to_mask(rgb, mask, aspect_standard, enlarge_ratio)
except Exception as ex:
print(rgb_path, mask_path, ex)
intr[0, 2] -= offset_x
intr[1, 2] -= offset_y
# resize to render_tgt_size for training
tgt_hw_size, ratio_y, ratio_x = self.calc_new_tgt_size_by_aspect(cur_hw=rgb.shape[:2],
aspect_standard=aspect_standard,
tgt_size=render_tgt_size, multiply=multiply)
rgb = cv2.resize(rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=interpolation)
mask = cv2.resize(mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=interpolation)
intr = self.scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y)
assert abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5, f"{intr[0, 2] * 2}, {rgb.shape[1]}"
assert abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5, f"{intr[1, 2] * 2}, {rgb.shape[0]}"
intr[0, 2] = rgb.shape[1] // 2
intr[1, 2] = rgb.shape[0] // 2
rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0)
mask = torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0)
return rgb, mask, intr
def scale_intrs(self, intrs, ratio_x, ratio_y):
if len(intrs.shape) >= 3:
intrs[:, 0] = intrs[:, 0] * ratio_x
intrs[:, 1] = intrs[:, 1] * ratio_y
else:
intrs[0] = intrs[0] * ratio_x
intrs[1] = intrs[1] * ratio_y
return intrs
def uniform_sample_in_chunk(self, sample_num, sample_data):
chunks = np.array_split(sample_data, sample_num)
select_list = []
for chunk in chunks:
select_list.append(np.random.choice(chunk))
return select_list
def uniform_sample_in_chunk_det(self, sample_num, sample_data):
chunks = np.array_split(sample_data, sample_num)
select_list = []
for chunk in chunks:
select_list.append(chunk[len(chunk)//2])
return select_list
def calc_new_tgt_size(self, cur_hw, tgt_size, multiply):
ratio = tgt_size / min(cur_hw)
tgt_size = int(ratio * cur_hw[0]), int(ratio * cur_hw[1])
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1]
return tgt_size, ratio_y, ratio_x
def calc_new_tgt_size_by_aspect(self, cur_hw, aspect_standard, tgt_size, multiply):
assert abs(cur_hw[0] / cur_hw[1] - aspect_standard) < 0.03
tgt_size = tgt_size * aspect_standard, tgt_size
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1]
return tgt_size, ratio_y, ratio_x
def load_flame_params(self, flame_file_path, teeth_bs=None):
flame_param = dict(np.load(flame_file_path), allow_pickle=True)
flame_param_tensor = {}
flame_param_tensor['expr'] = torch.FloatTensor(flame_param['expr'])[0]
flame_param_tensor['rotation'] = torch.FloatTensor(flame_param['rotation'])[0]
flame_param_tensor['neck_pose'] = torch.FloatTensor(flame_param['neck_pose'])[0]
flame_param_tensor['jaw_pose'] = torch.FloatTensor(flame_param['jaw_pose'])[0]
flame_param_tensor['eyes_pose'] = torch.FloatTensor(flame_param['eyes_pose'])[0]
flame_param_tensor['translation'] = torch.FloatTensor(flame_param['translation'])[0]
if teeth_bs is not None:
flame_param_tensor['teeth_bs'] = torch.FloatTensor(teeth_bs)
# flame_param_tensor['expr'] = torch.cat([flame_param_tensor['expr'], flame_param_tensor['teeth_bs']], dim=0)
return flame_param_tensor
@no_proxy
def inner_get_item(self, idx):
"""
Loaded contents:
rgbs: [M, 3, H, W]
poses: [M, 3, 4], [R|t]
intrinsics: [3, 2], [[fx, fy], [cx, cy], [weight, height]]
"""
crop_ratio_h, crop_ratio_w = self.crop_range_ratio_hw
uid = self.uids[idx]
if len(uid.split('/')) == 1:
uid = os.path.join(self.root_dirs, uid)
mode_str = "train" if not self.is_val else "test"
transforms_json = os.path.join(uid, f"transforms_{mode_str}.json")
with open(transforms_json) as fp:
data = json.load(fp)
cor_flame_path = transforms_json.replace('transforms_{}.json'.format(mode_str),'canonical_flame_param.npz')
flame_param = np.load(cor_flame_path)
shape_param = torch.FloatTensor(flame_param['shape'])
# data['static_offset'] = flame_param['static_offset']
all_frames = data["frames"]
sample_total_views = self.sample_side_views + 1
if len(all_frames) >= self.sample_side_views:
if not self.is_val:
if np.random.rand() < 0.7 and len(all_frames) > sample_total_views:
frame_id_list = self.uniform_sample_in_chunk(sample_total_views, np.arange(len(all_frames)))
else:
replace = len(all_frames) < sample_total_views
frame_id_list = np.random.choice(len(all_frames), size=sample_total_views, replace=replace)
else:
if len(all_frames) > sample_total_views:
frame_id_list = self.uniform_sample_in_chunk_det(sample_total_views, np.arange(len(all_frames)))
else:
frame_id_list = np.random.choice(len(all_frames), size=sample_total_views, replace=True)
else:
if not self.is_val:
replace = len(all_frames) < sample_total_views
frame_id_list = np.random.choice(len(all_frames), size=sample_total_views, replace=replace)
else:
if len(all_frames) > 1:
frame_id_list = np.linspace(0, len(all_frames) - 1, num=sample_total_views, endpoint=True)
frame_id_list = [round(e) for e in frame_id_list]
else:
frame_id_list = [0 for i in range(sample_total_views)]
cam_id_list = frame_id_list
assert self.sample_side_views + 1 == len(frame_id_list)
# source images
c2ws, intrs, rgbs, bg_colors, masks = [], [], [], [], []
flame_params = []
teeth_bs_pth = os.path.join(uid, "tracked_teeth_bs.npz")
use_teeth = False
if os.path.exists(teeth_bs_pth) and use_teeth:
teeth_bs_lst = np.load(teeth_bs_pth)['expr_teeth']
else:
teeth_bs_lst = None
for cam_id, frame_id in zip(cam_id_list, frame_id_list):
frame_info = all_frames[frame_id]
frame_path = os.path.join(uid, frame_info["file_path"])
if 'nersemble' in frame_path or "tiktok_v34" in frame_path:
mask_path = os.path.join(uid, frame_info["fg_mask_path"])
else:
mask_path = os.path.join(uid, frame_info["fg_mask_path"]).replace("/export/", "/mask/").replace("/fg_masks/", "/mask/").replace(".png", ".jpg")
if not os.path.exists(mask_path):
mask_path = os.path.join(uid, frame_info["fg_mask_path"])
teeth_bs = teeth_bs_lst[frame_id] if teeth_bs_lst is not None else None
flame_path = os.path.join(uid, frame_info["flame_param_path"])
flame_param = self.load_flame_params(flame_path, teeth_bs)
# if cam_id == 0:
# shape_param = flame_param["betas"]
c2w, ori_intrinsic = self._load_pose(frame_info, transpose_R="nersemble" in frame_path)
bg_color = random.choice([0.0, 0.5, 1.0]) # 1.0
# if self.is_val:
# bg_color = 1.0
rgb, mask, intrinsic = self.load_rgb_image_with_aug_bg(frame_path, mask_path=mask_path,
bg_color=bg_color,
pad_ratio=0,
max_tgt_size=None,
aspect_standard=self.aspect_standard,
enlarge_ratio=self.enlarge_ratio if (not self.is_val) or ("nersemble" in frame_path) else [1.0, 1.0],
render_tgt_size=self.render_image_res,
multiply=16,
intr=ori_intrinsic.clone())
c2ws.append(c2w)
rgbs.append(rgb)
bg_colors.append(bg_color)
intrs.append(intrinsic)
flame_params.append(flame_param)
masks.append(mask)
c2ws = torch.stack(c2ws, dim=0) # [N, 4, 4]
intrs = torch.stack(intrs, dim=0) # [N, 4, 4]
rgbs = torch.cat(rgbs, dim=0) # [N, 3, H, W]
bg_colors = torch.tensor(bg_colors, dtype=torch.float32).unsqueeze(-1).repeat(1, 3) # [N, 3]
masks = torch.cat(masks, dim=0) # [N, 1, H, W]
flame_params_tmp = defaultdict(list)
for flame in flame_params:
for k, v in flame.items():
flame_params_tmp[k].append(v)
for k, v in flame_params_tmp.items():
flame_params_tmp[k] = torch.stack(v)
flame_params = flame_params_tmp
# TODO check different betas for same person
flame_params["betas"] = shape_param
# reference images
prob_refidx = np.ones(self.sample_side_views + 1)
if not self.is_val:
prob_refidx[0] = 0.5 # front_prob
else:
prob_refidx[0] = 1.0
# print(frame_id_list, kinect_color_list, prob_refidx[0])
prob_refidx[1:] = (1 - prob_refidx[0]) / len(prob_refidx[1:])
ref_idx = np.random.choice(self.sample_side_views + 1, p=prob_refidx)
cam_id_source_list = cam_id_list[ref_idx: ref_idx + 1]
frame_id_source_list = frame_id_list[ref_idx: ref_idx + 1]
source_c2ws, source_intrs, source_rgbs, source_flame_params = [], [], [], []
for cam_id, frame_id in zip(cam_id_source_list, frame_id_source_list):
frame_info = all_frames[frame_id]
frame_path = os.path.join(uid, frame_info["file_path"])
if 'nersemble' in frame_path:
mask_path = os.path.join(uid, frame_info["fg_mask_path"])
else:
mask_path = os.path.join(uid, frame_info["fg_mask_path"]).replace("/export/", "/mask/").replace("/fg_masks/", "/mask/").replace(".png", ".jpg")
flame_path = os.path.join(uid, frame_info["flame_param_path"])
teeth_bs = teeth_bs_lst[frame_id] if teeth_bs_lst is not None else None
flame_param = self.load_flame_params(flame_path, teeth_bs)
c2w, ori_intrinsic = self._load_pose(frame_info)
# bg_color = 1.0
# bg_color = 0.0
bg_color = random.choice([0.0, 0.5, 1.0]) # 1.
rgb, mask, intrinsic = self.load_rgb_image_with_aug_bg(frame_path, mask_path=mask_path,
bg_color=bg_color,
pad_ratio=0,
max_tgt_size=None,
aspect_standard=self.aspect_standard,
enlarge_ratio=self.enlarge_ratio if (not self.is_val) or ("nersemble" in frame_path) else [1.0, 1.0],
render_tgt_size=self.source_image_res,
multiply=self.multiply,
intr=ori_intrinsic.clone())
source_c2ws.append(c2w)
source_intrs.append(intrinsic)
source_rgbs.append(rgb)
source_flame_params.append(flame_param)
source_c2ws = torch.stack(source_c2ws, dim=0)
source_intrs = torch.stack(source_intrs, dim=0)
source_rgbs = torch.cat(source_rgbs, dim=0)
flame_params_tmp = defaultdict(list)
for flame in source_flame_params:
for k, v in flame.items():
flame_params_tmp['source_'+k].append(v)
for k, v in flame_params_tmp.items():
flame_params_tmp[k] = torch.stack(v)
source_flame_params = flame_params_tmp
# TODO check different betas for same person
source_flame_params["source_betas"] = shape_param
render_image = rgbs
render_mask = masks
tgt_size = render_image.shape[2:4] # [H, W]
assert abs(intrs[0, 0, 2] * 2 - render_image.shape[3]) <= 1.1, f"{intrs[0, 0, 2] * 2}, {render_image.shape}"
assert abs(intrs[0, 1, 2] * 2 - render_image.shape[2]) <= 1.1, f"{intrs[0, 1, 2] * 2}, {render_image.shape}"
ret = {
'uid': uid,
'source_c2ws': source_c2ws, # [N1, 4, 4]
'source_intrs': source_intrs, # [N1, 4, 4]
'source_rgbs': source_rgbs.clamp(0, 1), # [N1, 3, H, W]
'render_image': render_image.clamp(0, 1), # [N, 3, H, W]
'render_mask': render_mask.clamp(0, 1), #[ N, 1, H, W]
'c2ws': c2ws, # [N, 4, 4]
'intrs': intrs, # [N, 4, 4]
'render_full_resolutions': torch.tensor([tgt_size], dtype=torch.float32).repeat(self.sample_side_views + 1, 1), # [N, 2]
'render_bg_colors': bg_colors, # [N, 3]
'pytorch3d_transpose_R': torch.Tensor(["nersemble" in frame_path]), # [1]
}
#['root_pose', 'body_pose', 'jaw_pose', 'leye_pose', 'reye_pose', 'lhand_pose', 'rhand_pose', 'expr', 'trans', 'betas']
# 'flame_params': flame_params, # dict: body_pose:[N, 21, 3],
ret.update(flame_params)
ret.update(source_flame_params)
return ret
def gen_valid_id_json():
root_dir = "./train_data/vfhq_vhap/export"
save_path = "./train_data/vfhq_vhap/label/valid_id_list.json"
os.makedirs(os.path.dirname(save_path), exist_ok=True)
valid_id_list = []
for file in os.listdir(root_dir):
if not file.startswith("."):
valid_id_list.append(file)
print(len(valid_id_list), valid_id_list[:2])
with open(save_path, "w") as fp:
json.dump(valid_id_list, fp)
def gen_valid_id_json():
root_dir = "./train_data/vfhq_vhap/export"
mask_root_dir = "./train_data/vfhq_vhap/mask"
save_path = "./train_data/vfhq_vhap/label/valid_id_list.json"
os.makedirs(os.path.dirname(save_path), exist_ok=True)
valid_id_list = []
for file in os.listdir(root_dir):
if not file.startswith(".") and ".txt" not in file:
valid_id_list.append(file)
print("raw:", len(valid_id_list), valid_id_list[:2])
mask_valid_id_list = []
for file in os.listdir(mask_root_dir):
if not file.startswith(".") and ".txt" not in file:
mask_valid_id_list.append(file)
print("mask:", len(mask_valid_id_list), mask_valid_id_list[:2])
valid_id_list = list(set(valid_id_list).intersection(set(mask_valid_id_list)))
print("intesection:", len(mask_valid_id_list), mask_valid_id_list[:2])
with open(save_path, "w") as fp:
json.dump(valid_id_list, fp)
save_train_path = "./train_data/vfhq_vhap/label/valid_id_train_list.json"
save_val_path = "./train_data/vfhq_vhap/label/valid_id_val_list.json"
valid_id_list = sorted(valid_id_list)
idxs = np.linspace(0, len(valid_id_list)-1, num=20, endpoint=True).astype(np.int64)
valid_id_train_list = []
valid_id_val_list = []
for i in range(len(valid_id_list)):
if i in idxs:
valid_id_val_list.append(valid_id_list[i])
else:
valid_id_train_list.append(valid_id_list[i])
print(len(valid_id_train_list), len(valid_id_val_list), valid_id_val_list)
with open(save_train_path, "w") as fp:
json.dump(valid_id_train_list, fp)
with open(save_val_path, "w") as fp:
json.dump(valid_id_val_list, fp)
if __name__ == "__main__":
import trimesh
import cv2
root_dir = "./train_data/vfhq_vhap/export"
meta_path = "./train_data/vfhq_vhap/label/valid_id_list.json"
dataset = VideoHeadDataset(root_dirs=root_dir, meta_path=meta_path, sample_side_views=15,
render_image_res_low=512, render_image_res_high=512,
render_region_size=(512, 512), source_image_res=512,
enlarge_ratio=[0.8, 1.2],
debug=False, is_val=False)
from lam.models.rendering.flame_model.flame import FlameHeadSubdivided
# subdivided flame
subdivide = 2
flame_sub_model = FlameHeadSubdivided(
300,
100,
add_teeth=True,
add_shoulder=False,
flame_model_path='pretrained_models/human_model_files/flame_assets/flame/flame2023.pkl',
flame_lmk_embedding_path="pretrained_models/human_model_files/flame_assets/flame/landmark_embedding_with_eyes.npy",
flame_template_mesh_path="pretrained_models/human_model_files/flame_assets/flame/head_template_mesh.obj",
flame_parts_path="pretrained_models/human_model_files/flame_assets/flame/FLAME_masks.pkl",
subdivide_num=subdivide,
teeth_bs_flag=False,
).cuda()
source_key = "source_rgbs"
render_key = "render_image"
for idx, data in enumerate(dataset):
import boxx
boxx.tree(data)
if idx > 0:
exit(0)
os.makedirs("debug_vis/dataloader", exist_ok=True)
for i in range(data[source_key].shape[0]):
cv2.imwrite(f"debug_vis/dataloader/{source_key}_{i}_b{idx}.jpg", ((data[source_key][i].permute(1, 2, 0).numpy()[:, :, (2, 1, 0)] * 255).astype(np.uint8)))
for i in range(data[render_key].shape[0]):
cv2.imwrite(f"debug_vis/dataloader/rgbs{i}_b{idx}.jpg", ((data[render_key][i].permute(1, 2, 0).numpy()[:, :, (2, 1, 0)] * 255).astype(np.uint8)))
save_root = "./debug_vis/dataloader"
os.makedirs(save_root, exist_ok=True)
shape = data['betas'].to('cuda')
flame_param = {}
flame_param['expr'] = data['expr'].to('cuda')
flame_param['rotation'] = data['rotation'].to('cuda')
flame_param['neck'] = data['neck_pose'].to('cuda')
flame_param['jaw'] = data['jaw_pose'].to('cuda')
flame_param['eyes'] = data['eyes_pose'].to('cuda')
flame_param['translation'] = data['translation'].to('cuda')
v_cano = flame_sub_model.get_cano_verts(
shape.unsqueeze(0)
)
ret = flame_sub_model.animation_forward(
v_cano.repeat(flame_param['expr'].shape[0], 1, 1),
shape.unsqueeze(0).repeat(flame_param['expr'].shape[0], 1),
flame_param['expr'],
flame_param['rotation'],
flame_param['neck'],
flame_param['jaw'],
flame_param['eyes'],
flame_param['translation'],
zero_centered_at_root_node=False,
return_landmarks=False,
return_verts_cano=True,
# static_offset=batch_data['static_offset'].to('cuda'),
static_offset=None,
)
import boxx
boxx.tree(data)
boxx.tree(ret)
for i in range(ret["animated"].shape[0]):
mesh = trimesh.Trimesh()
mesh.vertices = np.array(ret["animated"][i].cpu().squeeze())
mesh.faces = np.array(flame_sub_model.faces.cpu().squeeze())
mesh.export(f'{save_root}/animated_sub{subdivide}_{i}.obj')
intr = data["intrs"][i]
from lam.models.rendering.utils.vis_utils import render_mesh
cam_param = {"focal": torch.tensor([intr[0, 0], intr[1, 1]]),
"princpt": torch.tensor([intr[0, 2], intr[1, 2]])}
render_shape = data[render_key].shape[2:] # int(cam_param['princpt'][1]* 2), int(cam_param['princpt'][0] * 2)
face = flame_sub_model.faces.cpu().squeeze().numpy()
vertices = ret["animated"][i].cpu().squeeze()
c2ws = data["c2ws"][i]
w2cs = torch.inverse(c2ws)
if data['pytorch3d_transpose_R'][0] > 0:
R = w2cs[:3, :3].transpose(1, 0)
else:
R = w2cs[:3, :3]
T = w2cs[:3, 3]
vertices = vertices @ R + T
mesh_render, is_bkg = render_mesh(vertices, face, cam_param=cam_param,
bkg=np.ones((render_shape[0],render_shape[1], 3), dtype=np.float32) * 255,
return_bg_mask=True)
rgb_mesh = mesh_render.astype(np.uint8)
t_image = (data[render_key][i].permute(1, 2, 0)*255).numpy().astype(np.uint8)
blend_ratio = 0.7
vis_img = np.concatenate([rgb_mesh, t_image, (blend_ratio * rgb_mesh + (1 - blend_ratio) * t_image).astype(np.uint8)], axis=1)
cam_idx = int(data.get('cam_idxs', [i for j in range(16)])[i])
cv2.imwrite(os.path.join(save_root, f"render_{cam_idx}.jpg"), vis_img[:, :, (2, 1, 0)])
|