Spaces:
Running
on
Zero
Running
on
Zero
# | |
# Toyota Motor Europe NV/SA and its affiliated companies retain all intellectual | |
# property and proprietary rights in and to this software and related documentation. | |
# Any commercial use, reproduction, disclosure or distribution of this software and | |
# related documentation without an express license agreement from Toyota Motor Europe NV/SA | |
# is strictly prohibited. | |
# | |
from typing import Tuple, Literal, Optional | |
# from pytorch3d.structures.meshes import Meshes | |
import nvdiffrast.torch as dr | |
import torch.nn.functional as F | |
import torch | |
import numpy as np | |
from vhap.util import vector_ops as V | |
def get_SH_shading(normals, sh_coefficients, sh_const): | |
""" | |
:param normals: shape N, H, W, K, 3 | |
:param sh_coefficients: shape N, 9, 3 | |
:return: | |
""" | |
N = normals | |
# compute sh basis function values of shape [N, H, W, K, 9] | |
sh = torch.stack( | |
[ | |
N[..., 0] * 0.0 + 1.0, | |
N[..., 0], | |
N[..., 1], | |
N[..., 2], | |
N[..., 0] * N[..., 1], | |
N[..., 0] * N[..., 2], | |
N[..., 1] * N[..., 2], | |
N[..., 0] ** 2 - N[..., 1] ** 2, | |
3 * (N[..., 2] ** 2) - 1, | |
], | |
dim=-1, | |
) | |
sh = sh * sh_const[None, None, None, :].to(sh.device) | |
# shape [N, H, W, K, 9, 1] | |
sh = sh[..., None] | |
# shape [N, H, W, K, 9, 3] | |
sh_coefficients = sh_coefficients[:, None, None, :, :] | |
# shape after linear combination [N, H, W, K, 3] | |
shading = torch.sum(sh_coefficients * sh, dim=3) | |
return shading | |
class NVDiffRenderer(torch.nn.Module): | |
def __init__( | |
self, | |
use_opengl: bool = False, | |
lighting_type: Literal['constant', 'front', 'front-range', 'SH'] = 'front', | |
lighting_space: Literal['camera', 'world'] = 'world', | |
disturb_rate_fg: Optional[float] = 0.5, | |
disturb_rate_bg: Optional[float] = 0.5, | |
fid2cid: Optional[torch.Tensor] = None, | |
): | |
super().__init__() | |
self.backend = 'nvdiffrast' | |
self.lighting_type = lighting_type | |
self.lighting_space = lighting_space | |
self.disturb_rate_fg = disturb_rate_fg | |
self.disturb_rate_bg = disturb_rate_bg | |
self.glctx = dr.RasterizeGLContext() if use_opengl else dr.RasterizeCudaContext() | |
self.fragment_cache = None | |
if fid2cid is not None: | |
fid2cid = F.pad(fid2cid, [1, 0], value=0) # for nvdiffrast, fid==0 means background pixels | |
self.register_buffer("fid2cid", fid2cid, persistent=False) | |
# constant factor of first three bands of spherical harmonics | |
pi = np.pi | |
sh_const = torch.tensor( | |
[ | |
1 / np.sqrt(4 * pi), | |
((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))), | |
((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))), | |
((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))), | |
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))), | |
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))), | |
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))), | |
(pi / 4) * (3 / 2) * (np.sqrt(5 / (12 * pi))), | |
(pi / 4) * (1 / 2) * (np.sqrt(5 / (4 * pi))), | |
], | |
dtype=torch.float32, | |
) | |
self.register_buffer("sh_const", sh_const, persistent=False) | |
def clear_cache(self): | |
self.fragment_cache = None | |
def mvp_from_camera_param(self, RT, K, image_size): | |
# projection matrix | |
proj = self.projection_from_intrinsics(K, image_size) | |
# Modelview and modelview + projection matrices. | |
if RT.shape[-2] == 3: | |
mv = torch.nn.functional.pad(RT, [0, 0, 0, 1]) | |
mv[..., 3, 3] = 1 | |
elif RT.shape[-2] == 4: | |
mv = RT | |
mvp = torch.bmm(proj, mv) | |
return mvp | |
def projection_from_intrinsics(self, K: torch.Tensor, image_size: Tuple[int], near: float=0.1, far:float=10): | |
""" | |
Transform points from camera space (x: right, y: up, z: out) to clip space (x: right, y: down, z: in) | |
Args: | |
K: Intrinsic matrix, (N, 3, 3) | |
K = [[ | |
[fx, 0, cx], | |
[0, fy, cy], | |
[0, 0, 1], | |
] | |
] | |
image_size: (height, width) | |
Output: | |
proj = [[ | |
[2*fx/w, 0.0, (w - 2*cx)/w, 0.0 ], | |
[0.0, 2*fy/h, (h - 2*cy)/h, 0.0 ], | |
[0.0, 0.0, -(far+near) / (far-near), -2*far*near / (far-near)], | |
[0.0, 0.0, -1.0, 0.0 ] | |
] | |
] | |
""" | |
B = K.shape[0] | |
h, w = image_size | |
if K.shape[-2:] == (3, 3): | |
fx = K[..., 0, 0] | |
fy = K[..., 1, 1] | |
cx = K[..., 0, 2] | |
cy = K[..., 1, 2] | |
elif K.shape[-1] == 4: | |
fx, fy, cx, cy = K[..., [0, 1, 2, 3]].split(1, dim=-1) | |
else: | |
raise ValueError(f"Expected K to be (N, 3, 3) or (N, 4) but got: {K.shape}") | |
proj = torch.zeros([B, 4, 4], device=K.device) | |
proj[:, 0, 0] = fx * 2 / w | |
proj[:, 1, 1] = fy * 2 / h | |
proj[:, 0, 2] = (w - 2 * cx) / w | |
proj[:, 1, 2] = (h - 2 * cy) / h | |
proj[:, 2, 2] = -(far+near) / (far-near) | |
proj[:, 2, 3] = -2*far*near / (far-near) | |
proj[:, 3, 2] = -1 | |
return proj | |
def world_to_camera(self, vtx, RT): | |
"""Transform vertex positions from the world space to the camera space""" | |
RT = torch.from_numpy(RT).cuda() if isinstance(RT, np.ndarray) else RT | |
if RT.shape[-2] == 3: | |
mv = torch.nn.functional.pad(RT, [0, 0, 0, 1]) | |
mv[..., 3, 3] = 1 | |
elif RT.shape[-2] == 4: | |
mv = RT | |
# (x,y,z) -> (x',y',z',w) | |
assert vtx.shape[-1] in [3, 4] | |
if vtx.shape[-1] == 3: | |
posw = torch.cat([vtx, torch.ones([*vtx.shape[:2], 1]).cuda()], axis=-1) | |
elif vtx.shape[-1] == 4: | |
posw = vtx | |
else: | |
raise ValueError(f"Expected 3D or 4D points but got: {vtx.shape[-1]}") | |
return torch.bmm(posw, RT.transpose(-1, -2)) | |
def camera_to_clip(self, vtx, K, image_size): | |
"""Transform vertex positions from the camera space to the clip space""" | |
K = torch.from_numpy(K).cuda() if isinstance(K, np.ndarray) else K | |
proj = self.projection_from_intrinsics(K, image_size) | |
# (x,y,z) -> (x',y',z',w) | |
assert vtx.shape[-1] in [3, 4] | |
if vtx.shape[-1] == 3: | |
posw = torch.cat([vtx, torch.ones([*vtx.shape[:2], 1]).cuda()], axis=-1) | |
elif vtx.shape[-1] == 4: | |
posw = vtx | |
else: | |
raise ValueError(f"Expected 3D or 4D points but got: {vtx.shape[-1]}") | |
return torch.bmm(posw, proj.transpose(-1, -2)) | |
def world_to_clip(self, vtx, RT, K, image_size): | |
"""Transform vertex positions from the world space to the clip space""" | |
mvp = self.mvp_from_camera_param(RT, K, image_size) | |
mvp = torch.from_numpy(mvp).cuda() if isinstance(mvp, np.ndarray) else mvp | |
# (x,y,z) -> (x',y',z',w) | |
posw = torch.cat([vtx, torch.ones([*vtx.shape[:2], 1]).cuda()], axis=-1) | |
return torch.bmm(posw, mvp.transpose(-1, -2)) | |
def world_to_ndc(self, vtx, RT, K, image_size, flip_y=False): | |
"""Transform vertex positions from the world space to the NDC space""" | |
verts_clip = self.world_to_clip(vtx, RT, K, image_size) | |
verts_ndc = verts_clip[:, :, :3] / verts_clip[:, :, 3:] | |
if flip_y: | |
verts_ndc[:, :, 1] *= -1 | |
return verts_ndc | |
def rasterize(self, verts, faces, RT, K, image_size, use_cache=False, require_grad=False): | |
""" | |
Rasterizes meshes using a standard rasterization approach | |
:param meshes: | |
:param cameras: | |
:param image_size: | |
:return: fragments: | |
screen_coords: N x H x W x 2 with x, y values following pytorch3ds NDC-coord system convention | |
top left = +1, +1 ; bottom_right = -1, -1 | |
""" | |
# v_normals = self.compute_v_normals(verts, faces) | |
# vertices and faces | |
verts_camera = self.world_to_camera(verts, RT) | |
verts_clip = self.camera_to_clip(verts_camera, K, image_size) | |
tri = faces.int() | |
rast_out, rast_out_db = self.rasterize_fragments(verts_clip, tri, image_size, use_cache, require_grad) | |
rast_dict = { | |
"rast_out": rast_out, | |
"rast_out_db": rast_out_db, | |
"verts": verts, | |
"verts_camera": verts_camera[..., :3], | |
"verts_clip": verts_clip, | |
} | |
# if not require_grad: | |
# verts_ndc = verts_clip[:, :, :3] / verts_clip[:, :, 3:] | |
# screen_coords = self.compute_screen_coords(rast_out, verts_ndc, faces, image_size) | |
# rast_dict["screen_coords"] = screen_coords | |
return rast_dict | |
def rasterize_fragments(self, verts_clip, tri, image_size, use_cache, require_grad=False): | |
""" | |
Either rasterizes meshes or returns cached result | |
""" | |
if not use_cache or self.fragment_cache is None: | |
if require_grad: | |
rast_out, rast_out_db = dr.rasterize(self.glctx, verts_clip, tri, image_size) | |
else: | |
with torch.no_grad(): | |
rast_out, rast_out_db = dr.rasterize(self.glctx, verts_clip, tri, image_size) | |
self.fragment_cache = (rast_out, rast_out_db) | |
return self.fragment_cache | |
def compute_screen_coords(self, rast_out: torch.Tensor, verts:torch.Tensor, faces:torch.Tensor, image_size: Tuple[int]): | |
""" Compute screen coords for visible pixels | |
Args: | |
verts: (N, V, 3), the verts should lie in the ndc space | |
faces: (F, 3) | |
""" | |
N = verts.shape[0] | |
F = faces.shape[0] | |
meshes = Meshes(verts, faces[None, ...].expand(N, -1, -1)) | |
verts_packed = meshes.verts_packed() | |
faces_packed = meshes.faces_packed() | |
face_verts = verts_packed[faces_packed] | |
# NOTE: nvdiffrast shifts face index by +1, and use 0 to flag empty pixel | |
pix2face = rast_out[..., -1:].long() - 1 # (N, H, W, 1) | |
is_visible = pix2face > -1 # (N, H, W, 1) | |
# NOTE: is_visible is computed before packing pix2face to ensure correctness | |
pix2face_packed = pix2face + torch.arange(0, N)[:, None, None, None].to(pix2face) * F | |
bary_coords = rast_out[..., :2] # (N, H, W, 2) | |
bary_coords = torch.cat([bary_coords, 1 - bary_coords.sum(dim=-1, keepdim=True)], dim =-1) # (N, H, W, 3) | |
visible_faces = pix2face_packed[is_visible] # (sum(is_visible), 3, 3) | |
visible_face_verts = face_verts[visible_faces] | |
visible_bary_coords = bary_coords[is_visible[..., 0]] # (sum(is_visible), 3, 1) | |
# visible_bary_coords = torch.cat([visible_bary_coords, 1 - visible_bary_coords.sum(dim=-1, keepdim=True)], dim =-1) | |
visible_surface_point = visible_face_verts * visible_bary_coords[..., None] | |
visible_surface_point = visible_surface_point.sum(dim=1) | |
screen_coords = torch.zeros(*pix2face_packed.shape[:3], 2, device=meshes.device) | |
screen_coords[is_visible[..., 0]] = visible_surface_point[:, :2] # now have gradient | |
return screen_coords | |
def compute_v_normals(self, verts, faces): | |
i0 = faces[..., 0].long() | |
i1 = faces[..., 1].long() | |
i2 = faces[..., 2].long() | |
v0 = verts[..., i0, :] | |
v1 = verts[..., i1, :] | |
v2 = verts[..., i2, :] | |
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1) | |
v_normals = torch.zeros_like(verts) | |
N = verts.shape[0] | |
v_normals.scatter_add_(1, i0[..., None].repeat(N, 1, 3), face_normals) | |
v_normals.scatter_add_(1, i1[..., None].repeat(N, 1, 3), face_normals) | |
v_normals.scatter_add_(1, i2[..., None].repeat(N, 1, 3), face_normals) | |
v_normals = torch.where(V.dot(v_normals, v_normals) > 1e-20, v_normals, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda')) | |
v_normals = V.safe_normalize(v_normals) | |
if torch.is_anomaly_enabled(): | |
assert torch.all(torch.isfinite(v_normals)) | |
return v_normals | |
def compute_face_normals(self, verts, faces): | |
i0 = faces[..., 0].long() | |
i1 = faces[..., 1].long() | |
i2 = faces[..., 2].long() | |
v0 = verts[..., i0, :] | |
v1 = verts[..., i1, :] | |
v2 = verts[..., i2, :] | |
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1) | |
face_normals = V.safe_normalize(face_normals) | |
if torch.is_anomaly_enabled(): | |
assert torch.all(torch.isfinite(face_normals)) | |
return face_normals | |
def shade(self, normal, lighting_coeff=None): | |
if self.lighting_type == 'constant': | |
diffuse = torch.ones_like(normal[..., :3]) | |
elif self.lighting_type == 'front': | |
# diffuse = torch.clamp(V.dot(normal, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda')), 0.0, 1.0) | |
diffuse = V.dot(normal, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda')) | |
mask_backface = diffuse < 0 | |
diffuse[mask_backface] = diffuse[mask_backface].abs()*0.3 | |
elif self.lighting_type == 'front-range': | |
bias = 0.75 | |
diffuse = torch.clamp(V.dot(normal, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda')) + bias, 0.0, 1.0) | |
elif self.lighting_type == 'SH': | |
diffuse = get_SH_shading(normal, lighting_coeff, self.sh_const) | |
else: | |
raise NotImplementedError(f"Unknown lighting type: {self.lighting_type}") | |
return diffuse | |
def detach_by_indices(self, x, indices): | |
x = x.clone() | |
x[:, indices] = x[:, indices].detach() | |
return x | |
def render_rgba( | |
self, rast_dict, verts, faces, verts_uv, faces_uv, tex, lights, background_color=[1., 1., 1.], | |
align_texture_except_fid=None, align_boundary_except_vid=None, enable_disturbance=False, | |
): | |
""" | |
Renders flame RGBA images | |
""" | |
rast_out = rast_dict["rast_out"] | |
rast_out_db = rast_dict["rast_out_db"] | |
verts = rast_dict["verts"] | |
verts_camera = rast_dict["verts_camera"] | |
verts_clip = rast_dict["verts_clip"] | |
faces = faces.int() | |
faces_uv = faces_uv.int() | |
fg_mask = torch.clamp(rast_out[..., -1:], 0, 1).bool() | |
out_dict = {} | |
# ---- vertex attributes ---- | |
if self.lighting_space == 'world': | |
v_normal = self.compute_v_normals(verts, faces) | |
elif self.lighting_space == 'camera': | |
v_normal = self.compute_v_normals(verts_camera, faces) | |
else: | |
raise NotImplementedError(f"Unknown lighting space: {self.lighting_space}") | |
v_attr = [v_normal] | |
v_attr = torch.cat(v_attr, dim=-1) | |
attr, _ = dr.interpolate(v_attr, rast_out, faces) | |
normal = attr[..., :3] | |
normal = V.safe_normalize(normal) | |
# ---- uv-space attributes ---- | |
texc, texd = dr.interpolate(verts_uv[None, ...], rast_out, faces_uv, rast_db=rast_out_db, diff_attrs='all') | |
if align_texture_except_fid is not None: # TODO: rethink when shading with normal | |
fid = rast_out[..., -1:].long() # the face index is shifted by +1 | |
mask = torch.zeros(faces.shape[0]+1, dtype=torch.bool, device=fid.device) | |
mask[align_texture_except_fid + 1] = True | |
b, h, w = rast_out.shape[:3] | |
rast_mask = torch.gather(mask.reshape(1, 1, 1, -1).expand(b, h, w, -1), 3, fid) | |
texc = torch.where(rast_mask, texc.detach(), texc) | |
tex = tex.permute(0, 2, 3, 1).contiguous() # (N, T, T, 4) | |
albedo = dr.texture(tex, texc, texd, filter_mode='linear-mipmap-linear', max_mip_level=None) | |
# ---- shading ---- | |
diffuse = self.shade(normal, lights) | |
diffuse_detach_normal = self.shade(normal.detach(), lights) | |
rgb = albedo * diffuse | |
alpha = fg_mask.float() | |
rgba = torch.cat([rgb, alpha], dim=-1) | |
# ---- background ---- | |
if isinstance(background_color, list): | |
"""Background as a constant color""" | |
rgba_bg = torch.tensor(background_color + [0]).to(rgba).expand_as(rgba) # RGBA | |
elif isinstance(background_color, torch.Tensor): | |
"""Background as a image""" | |
rgba_bg = background_color | |
rgba_bg = torch.cat([rgba_bg, torch.zeros_like(rgba_bg[..., :1])], dim=-1) # RGBA | |
else: | |
raise ValueError(f"Unknown background type: {type(background_color)}") | |
rgba_bg = rgba_bg.flip(1) # opengl camera has y-axis up, needs flipping | |
rgba = torch.where(fg_mask, rgba, rgba_bg) | |
rgba_orig = rgba | |
if enable_disturbance: | |
# ---- color disturbance ---- | |
B, H, W, _ = rgba.shape | |
# compute random blending weights based on the disturbance rate | |
if self.disturb_rate_fg is not None: | |
w_fg = (torch.rand_like(rgba[..., :1]) < self.disturb_rate_fg).int() | |
else: | |
w_fg = torch.zeros_like(rgba[..., :1]).int() | |
if self.disturb_rate_bg is not None: | |
w_bg = (torch.rand_like(rgba[..., :1]) < self.disturb_rate_bg).int() | |
else: | |
w_bg = torch.zeros_like(rgba[..., :1]).int() | |
# sample pixles from clusters | |
fid = rast_out[..., -1:].long() # the face index is shifted by +1 | |
num_clusters = self.fid2cid.max() + 1 | |
fid2cid = self.fid2cid[None, None, None, :].expand(B, H, W, -1) | |
cid = torch.gather(fid2cid, -1, fid) | |
out_dict['cid'] = cid.flip(1) | |
rgba_ = torch.zeros_like(rgba) | |
for i in range(num_clusters): | |
c_rgba = rgba_bg if i == 0 else rgba | |
w = w_bg if i == 0 else w_fg | |
c_mask = cid == i | |
c_pixels = c_rgba[c_mask.repeat_interleave(4, dim=-1)].reshape(-1, 4).detach() # NOTE: detach to avoid gradient flow | |
if i != 1: # skip #1 indicate faces that are not in any cluster | |
if len(c_pixels) > 0: | |
c_idx = torch.randint(0, len(c_pixels), (B * H * W, ), device=c_pixels.device) | |
c_sample = c_pixels[c_idx].reshape(B, H, W, 4) | |
rgba_ += c_mask * (c_sample * w + c_rgba * (1 - w)) | |
else: | |
rgba_ += c_mask * c_rgba | |
rgba = rgba_ | |
# ---- AA on both RGB and alpha channels ---- | |
if align_boundary_except_vid is not None: | |
verts_clip = self.detach_by_indices(verts_clip, align_boundary_except_vid) | |
rgba_aa = dr.antialias(rgba, rast_out, verts_clip, faces.int()) | |
aa = ((rgba - rgba_aa) != 0).any(dim=-1, keepdim=True).repeat_interleave(4, dim=-1) | |
# rgba_aa = torch.where(aa, rgba_aa, rgba_orig) # keep the original color if not antialiased (commented out due to worse tracking performance) | |
# ---- AA only on RGB channels ---- | |
# rgb = rgba[..., :3].contiguous() | |
# alpha = rgba[..., 3:] | |
# rgb = dr.antialias(rgb, rast_out, verts_clip, faces.int()) | |
# rgba = torch.cat([rgb, alpha], dim=-1) | |
out_dict.update({ | |
'albedo': albedo.flip(1), | |
'normal': normal.flip(1), | |
'diffuse': diffuse.flip(1), | |
'diffuse_detach_normal': diffuse_detach_normal.flip(1), | |
'rgba': rgba_aa.flip(1), | |
'aa': aa[..., :3].float().flip(1), | |
}) | |
return out_dict | |
def render_without_texture( | |
self, verts, faces, RT, K, image_size, background_color=[1., 1., 1.], | |
): | |
""" | |
Renders meshes into RGBA images | |
""" | |
verts_camera_ = self.world_to_camera(verts, RT) | |
verts_camera = verts_camera_[..., :3] | |
verts_clip = self.camera_to_clip(verts_camera_, K, image_size) | |
tri = faces.int() | |
rast_out, rast_out_db = dr.rasterize(self.glctx, verts_clip, tri, image_size) | |
faces = faces.int() | |
fg_mask = torch.clamp(rast_out[..., -1:], 0, 1).bool() | |
face_id = torch.clamp(rast_out[..., -1:].long() - 1, 0) # (B, W, H, 1) | |
W, H = face_id.shape[1:3] | |
face_normals = self.compute_face_normals(verts_camera, faces) # (B, F, 3) | |
face_normals_ = face_normals[:, None, None, :, :].expand(-1, W, H, -1, -1) # (B, 1, 1, F, 3) | |
face_id_ = face_id[:, :, :, None].expand(-1, -1, -1, -1, 3) # (B, W, H, 1, 1) | |
normal = torch.gather(face_normals_, -2, face_id_).squeeze(-2) # (B, W, H, 3) | |
albedo = torch.ones_like(normal) | |
# ---- shading ---- | |
diffuse = self.shade(normal) | |
rgb = albedo * diffuse | |
alpha = fg_mask.float() | |
rgba = torch.cat([rgb, alpha], dim=-1) | |
# ---- background ---- | |
if isinstance(background_color, list) or isinstance(background_color, tuple): | |
"""Background as a constant color""" | |
rgba_bg = torch.tensor(list(background_color) + [0]).to(rgba).expand_as(rgba) # RGBA | |
elif isinstance(background_color, torch.Tensor): | |
"""Background as a image""" | |
rgba_bg = background_color | |
rgba_bg = torch.cat([rgba_bg, torch.zeros_like(rgba_bg[..., :1])], dim=-1) # RGBA | |
else: | |
raise ValueError(f"Unknown background type: {type(background_color)}") | |
rgba_bg = rgba_bg.flip(1) # opengl camera has y-axis up, needs flipping | |
normal = torch.where(fg_mask, normal, rgba_bg[..., :3]) | |
diffuse = torch.where(fg_mask, diffuse, rgba_bg[..., :3]) | |
rgba = torch.where(fg_mask, rgba, rgba_bg) | |
# ---- AA on both RGB and alpha channels ---- | |
rgba_aa = dr.antialias(rgba, rast_out, verts_clip, faces.int()) | |
return { | |
'albedo': albedo.flip(1), | |
'normal': normal.flip(1), | |
'diffuse': diffuse.flip(1), | |
'rgba': rgba_aa.flip(1), | |
'verts_clip': verts_clip, | |
} | |
def render_v_color( | |
self, verts, v_color, faces, RT, K, image_size, background_color=[1., 1., 1.], | |
): | |
""" | |
Renders meshes into RGBA images | |
""" | |
verts_camera_ = self.world_to_camera(verts, RT) | |
verts_camera = verts_camera_[..., :3] | |
verts_clip = self.camera_to_clip(verts_camera_, K, image_size) | |
tri = faces.int() | |
rast_out, rast_out_db = dr.rasterize(self.glctx, verts_clip, tri, image_size) | |
faces = faces.int() | |
fg_mask = torch.clamp(rast_out[..., -1:], 0, 1).bool() | |
face_id = torch.clamp(rast_out[..., -1:].long() - 1, 0) # (B, W, H, 1) | |
W, H = face_id.shape[1:3] | |
face_normals = self.compute_face_normals(verts_camera, faces) # (B, F, 3) | |
face_normals_ = face_normals[:, None, None, :, :].expand(-1, W, H, -1, -1) # (B, 1, 1, F, 3) | |
face_id_ = face_id[:, :, :, None].expand(-1, -1, -1, -1, 3) # (B, W, H, 1, 1) | |
normal = torch.gather(face_normals_, -2, face_id_).squeeze(-2) # (B, W, H, 3) | |
albedo = torch.ones_like(normal) | |
v_attr = [v_color] | |
v_attr = torch.cat(v_attr, dim=-1) | |
attr, _ = dr.interpolate(v_attr, rast_out, faces) | |
albedo = attr[..., :3] | |
# ---- shading ---- | |
diffuse = self.shade(normal) | |
rgb = albedo * diffuse | |
alpha = fg_mask.float() | |
rgba = torch.cat([rgb, alpha], dim=-1) | |
# ---- background ---- | |
if isinstance(background_color, list) or isinstance(background_color, tuple): | |
"""Background as a constant color""" | |
rgba_bg = torch.tensor(list(background_color) + [0]).to(rgba).expand_as(rgba) # RGBA | |
elif isinstance(background_color, torch.Tensor): | |
"""Background as a image""" | |
rgba_bg = background_color | |
rgba_bg = torch.cat([rgba_bg, torch.zeros_like(rgba_bg[..., :1])], dim=-1) # RGBA | |
else: | |
raise ValueError(f"Unknown background type: {type(background_color)}") | |
rgba_bg = rgba_bg.flip(1) # opengl camera has y-axis up, needs flipping | |
normal = torch.where(fg_mask, normal, rgba_bg[..., :3]) | |
diffuse = torch.where(fg_mask, diffuse, rgba_bg[..., :3]) | |
rgba = torch.where(fg_mask, rgba, rgba_bg) | |
# ---- AA on both RGB and alpha channels ---- | |
rgba_aa = dr.antialias(rgba, rast_out, verts_clip, faces.int()) | |
return { | |
'albedo': albedo.flip(1), | |
'normal': normal.flip(1), | |
'diffuse': diffuse.flip(1), | |
'rgba': rgba_aa.flip(1), | |
} | |