Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,134 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 |
#
# Toyota Motor Europe NV/SA and its affiliated companies retain all intellectual
# property and proprietary rights in and to this software and related documentation.
# Any commercial use, reproduction, disclosure or distribution of this software and
# related documentation without an express license agreement from Toyota Motor Europe NV/SA
# is strictly prohibited.
#
from typing import Tuple, Literal, Optional
# from pytorch3d.structures.meshes import Meshes
import nvdiffrast.torch as dr
import torch.nn.functional as F
import torch
import numpy as np
from vhap.util import vector_ops as V
def get_SH_shading(normals, sh_coefficients, sh_const):
"""
:param normals: shape N, H, W, K, 3
:param sh_coefficients: shape N, 9, 3
:return:
"""
N = normals
# compute sh basis function values of shape [N, H, W, K, 9]
sh = torch.stack(
[
N[..., 0] * 0.0 + 1.0,
N[..., 0],
N[..., 1],
N[..., 2],
N[..., 0] * N[..., 1],
N[..., 0] * N[..., 2],
N[..., 1] * N[..., 2],
N[..., 0] ** 2 - N[..., 1] ** 2,
3 * (N[..., 2] ** 2) - 1,
],
dim=-1,
)
sh = sh * sh_const[None, None, None, :].to(sh.device)
# shape [N, H, W, K, 9, 1]
sh = sh[..., None]
# shape [N, H, W, K, 9, 3]
sh_coefficients = sh_coefficients[:, None, None, :, :]
# shape after linear combination [N, H, W, K, 3]
shading = torch.sum(sh_coefficients * sh, dim=3)
return shading
class NVDiffRenderer(torch.nn.Module):
def __init__(
self,
use_opengl: bool = False,
lighting_type: Literal['constant', 'front', 'front-range', 'SH'] = 'front',
lighting_space: Literal['camera', 'world'] = 'world',
disturb_rate_fg: Optional[float] = 0.5,
disturb_rate_bg: Optional[float] = 0.5,
fid2cid: Optional[torch.Tensor] = None,
):
super().__init__()
self.backend = 'nvdiffrast'
self.lighting_type = lighting_type
self.lighting_space = lighting_space
self.disturb_rate_fg = disturb_rate_fg
self.disturb_rate_bg = disturb_rate_bg
self.glctx = dr.RasterizeGLContext() if use_opengl else dr.RasterizeCudaContext()
self.fragment_cache = None
if fid2cid is not None:
fid2cid = F.pad(fid2cid, [1, 0], value=0) # for nvdiffrast, fid==0 means background pixels
self.register_buffer("fid2cid", fid2cid, persistent=False)
# constant factor of first three bands of spherical harmonics
pi = np.pi
sh_const = torch.tensor(
[
1 / np.sqrt(4 * pi),
((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))),
((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))),
((2 * pi) / 3) * (np.sqrt(3 / (4 * pi))),
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))),
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))),
(pi / 4) * (3) * (np.sqrt(5 / (12 * pi))),
(pi / 4) * (3 / 2) * (np.sqrt(5 / (12 * pi))),
(pi / 4) * (1 / 2) * (np.sqrt(5 / (4 * pi))),
],
dtype=torch.float32,
)
self.register_buffer("sh_const", sh_const, persistent=False)
def clear_cache(self):
self.fragment_cache = None
def mvp_from_camera_param(self, RT, K, image_size):
# projection matrix
proj = self.projection_from_intrinsics(K, image_size)
# Modelview and modelview + projection matrices.
if RT.shape[-2] == 3:
mv = torch.nn.functional.pad(RT, [0, 0, 0, 1])
mv[..., 3, 3] = 1
elif RT.shape[-2] == 4:
mv = RT
mvp = torch.bmm(proj, mv)
return mvp
def projection_from_intrinsics(self, K: torch.Tensor, image_size: Tuple[int], near: float=0.1, far:float=10):
"""
Transform points from camera space (x: right, y: up, z: out) to clip space (x: right, y: down, z: in)
Args:
K: Intrinsic matrix, (N, 3, 3)
K = [[
[fx, 0, cx],
[0, fy, cy],
[0, 0, 1],
]
]
image_size: (height, width)
Output:
proj = [[
[2*fx/w, 0.0, (w - 2*cx)/w, 0.0 ],
[0.0, 2*fy/h, (h - 2*cy)/h, 0.0 ],
[0.0, 0.0, -(far+near) / (far-near), -2*far*near / (far-near)],
[0.0, 0.0, -1.0, 0.0 ]
]
]
"""
B = K.shape[0]
h, w = image_size
if K.shape[-2:] == (3, 3):
fx = K[..., 0, 0]
fy = K[..., 1, 1]
cx = K[..., 0, 2]
cy = K[..., 1, 2]
elif K.shape[-1] == 4:
fx, fy, cx, cy = K[..., [0, 1, 2, 3]].split(1, dim=-1)
else:
raise ValueError(f"Expected K to be (N, 3, 3) or (N, 4) but got: {K.shape}")
proj = torch.zeros([B, 4, 4], device=K.device)
proj[:, 0, 0] = fx * 2 / w
proj[:, 1, 1] = fy * 2 / h
proj[:, 0, 2] = (w - 2 * cx) / w
proj[:, 1, 2] = (h - 2 * cy) / h
proj[:, 2, 2] = -(far+near) / (far-near)
proj[:, 2, 3] = -2*far*near / (far-near)
proj[:, 3, 2] = -1
return proj
def world_to_camera(self, vtx, RT):
"""Transform vertex positions from the world space to the camera space"""
RT = torch.from_numpy(RT).cuda() if isinstance(RT, np.ndarray) else RT
if RT.shape[-2] == 3:
mv = torch.nn.functional.pad(RT, [0, 0, 0, 1])
mv[..., 3, 3] = 1
elif RT.shape[-2] == 4:
mv = RT
# (x,y,z) -> (x',y',z',w)
assert vtx.shape[-1] in [3, 4]
if vtx.shape[-1] == 3:
posw = torch.cat([vtx, torch.ones([*vtx.shape[:2], 1]).cuda()], axis=-1)
elif vtx.shape[-1] == 4:
posw = vtx
else:
raise ValueError(f"Expected 3D or 4D points but got: {vtx.shape[-1]}")
return torch.bmm(posw, RT.transpose(-1, -2))
def camera_to_clip(self, vtx, K, image_size):
"""Transform vertex positions from the camera space to the clip space"""
K = torch.from_numpy(K).cuda() if isinstance(K, np.ndarray) else K
proj = self.projection_from_intrinsics(K, image_size)
# (x,y,z) -> (x',y',z',w)
assert vtx.shape[-1] in [3, 4]
if vtx.shape[-1] == 3:
posw = torch.cat([vtx, torch.ones([*vtx.shape[:2], 1]).cuda()], axis=-1)
elif vtx.shape[-1] == 4:
posw = vtx
else:
raise ValueError(f"Expected 3D or 4D points but got: {vtx.shape[-1]}")
return torch.bmm(posw, proj.transpose(-1, -2))
def world_to_clip(self, vtx, RT, K, image_size):
"""Transform vertex positions from the world space to the clip space"""
mvp = self.mvp_from_camera_param(RT, K, image_size)
mvp = torch.from_numpy(mvp).cuda() if isinstance(mvp, np.ndarray) else mvp
# (x,y,z) -> (x',y',z',w)
posw = torch.cat([vtx, torch.ones([*vtx.shape[:2], 1]).cuda()], axis=-1)
return torch.bmm(posw, mvp.transpose(-1, -2))
def world_to_ndc(self, vtx, RT, K, image_size, flip_y=False):
"""Transform vertex positions from the world space to the NDC space"""
verts_clip = self.world_to_clip(vtx, RT, K, image_size)
verts_ndc = verts_clip[:, :, :3] / verts_clip[:, :, 3:]
if flip_y:
verts_ndc[:, :, 1] *= -1
return verts_ndc
def rasterize(self, verts, faces, RT, K, image_size, use_cache=False, require_grad=False):
"""
Rasterizes meshes using a standard rasterization approach
:param meshes:
:param cameras:
:param image_size:
:return: fragments:
screen_coords: N x H x W x 2 with x, y values following pytorch3ds NDC-coord system convention
top left = +1, +1 ; bottom_right = -1, -1
"""
# v_normals = self.compute_v_normals(verts, faces)
# vertices and faces
verts_camera = self.world_to_camera(verts, RT)
verts_clip = self.camera_to_clip(verts_camera, K, image_size)
tri = faces.int()
rast_out, rast_out_db = self.rasterize_fragments(verts_clip, tri, image_size, use_cache, require_grad)
rast_dict = {
"rast_out": rast_out,
"rast_out_db": rast_out_db,
"verts": verts,
"verts_camera": verts_camera[..., :3],
"verts_clip": verts_clip,
}
# if not require_grad:
# verts_ndc = verts_clip[:, :, :3] / verts_clip[:, :, 3:]
# screen_coords = self.compute_screen_coords(rast_out, verts_ndc, faces, image_size)
# rast_dict["screen_coords"] = screen_coords
return rast_dict
def rasterize_fragments(self, verts_clip, tri, image_size, use_cache, require_grad=False):
"""
Either rasterizes meshes or returns cached result
"""
if not use_cache or self.fragment_cache is None:
if require_grad:
rast_out, rast_out_db = dr.rasterize(self.glctx, verts_clip, tri, image_size)
else:
with torch.no_grad():
rast_out, rast_out_db = dr.rasterize(self.glctx, verts_clip, tri, image_size)
self.fragment_cache = (rast_out, rast_out_db)
return self.fragment_cache
def compute_screen_coords(self, rast_out: torch.Tensor, verts:torch.Tensor, faces:torch.Tensor, image_size: Tuple[int]):
""" Compute screen coords for visible pixels
Args:
verts: (N, V, 3), the verts should lie in the ndc space
faces: (F, 3)
"""
N = verts.shape[0]
F = faces.shape[0]
meshes = Meshes(verts, faces[None, ...].expand(N, -1, -1))
verts_packed = meshes.verts_packed()
faces_packed = meshes.faces_packed()
face_verts = verts_packed[faces_packed]
# NOTE: nvdiffrast shifts face index by +1, and use 0 to flag empty pixel
pix2face = rast_out[..., -1:].long() - 1 # (N, H, W, 1)
is_visible = pix2face > -1 # (N, H, W, 1)
# NOTE: is_visible is computed before packing pix2face to ensure correctness
pix2face_packed = pix2face + torch.arange(0, N)[:, None, None, None].to(pix2face) * F
bary_coords = rast_out[..., :2] # (N, H, W, 2)
bary_coords = torch.cat([bary_coords, 1 - bary_coords.sum(dim=-1, keepdim=True)], dim =-1) # (N, H, W, 3)
visible_faces = pix2face_packed[is_visible] # (sum(is_visible), 3, 3)
visible_face_verts = face_verts[visible_faces]
visible_bary_coords = bary_coords[is_visible[..., 0]] # (sum(is_visible), 3, 1)
# visible_bary_coords = torch.cat([visible_bary_coords, 1 - visible_bary_coords.sum(dim=-1, keepdim=True)], dim =-1)
visible_surface_point = visible_face_verts * visible_bary_coords[..., None]
visible_surface_point = visible_surface_point.sum(dim=1)
screen_coords = torch.zeros(*pix2face_packed.shape[:3], 2, device=meshes.device)
screen_coords[is_visible[..., 0]] = visible_surface_point[:, :2] # now have gradient
return screen_coords
def compute_v_normals(self, verts, faces):
i0 = faces[..., 0].long()
i1 = faces[..., 1].long()
i2 = faces[..., 2].long()
v0 = verts[..., i0, :]
v1 = verts[..., i1, :]
v2 = verts[..., i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
v_normals = torch.zeros_like(verts)
N = verts.shape[0]
v_normals.scatter_add_(1, i0[..., None].repeat(N, 1, 3), face_normals)
v_normals.scatter_add_(1, i1[..., None].repeat(N, 1, 3), face_normals)
v_normals.scatter_add_(1, i2[..., None].repeat(N, 1, 3), face_normals)
v_normals = torch.where(V.dot(v_normals, v_normals) > 1e-20, v_normals, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda'))
v_normals = V.safe_normalize(v_normals)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(v_normals))
return v_normals
def compute_face_normals(self, verts, faces):
i0 = faces[..., 0].long()
i1 = faces[..., 1].long()
i2 = faces[..., 2].long()
v0 = verts[..., i0, :]
v1 = verts[..., i1, :]
v2 = verts[..., i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
face_normals = V.safe_normalize(face_normals)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(face_normals))
return face_normals
def shade(self, normal, lighting_coeff=None):
if self.lighting_type == 'constant':
diffuse = torch.ones_like(normal[..., :3])
elif self.lighting_type == 'front':
# diffuse = torch.clamp(V.dot(normal, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda')), 0.0, 1.0)
diffuse = V.dot(normal, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda'))
mask_backface = diffuse < 0
diffuse[mask_backface] = diffuse[mask_backface].abs()*0.3
elif self.lighting_type == 'front-range':
bias = 0.75
diffuse = torch.clamp(V.dot(normal, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda')) + bias, 0.0, 1.0)
elif self.lighting_type == 'SH':
diffuse = get_SH_shading(normal, lighting_coeff, self.sh_const)
else:
raise NotImplementedError(f"Unknown lighting type: {self.lighting_type}")
return diffuse
def detach_by_indices(self, x, indices):
x = x.clone()
x[:, indices] = x[:, indices].detach()
return x
def render_rgba(
self, rast_dict, verts, faces, verts_uv, faces_uv, tex, lights, background_color=[1., 1., 1.],
align_texture_except_fid=None, align_boundary_except_vid=None, enable_disturbance=False,
):
"""
Renders flame RGBA images
"""
rast_out = rast_dict["rast_out"]
rast_out_db = rast_dict["rast_out_db"]
verts = rast_dict["verts"]
verts_camera = rast_dict["verts_camera"]
verts_clip = rast_dict["verts_clip"]
faces = faces.int()
faces_uv = faces_uv.int()
fg_mask = torch.clamp(rast_out[..., -1:], 0, 1).bool()
out_dict = {}
# ---- vertex attributes ----
if self.lighting_space == 'world':
v_normal = self.compute_v_normals(verts, faces)
elif self.lighting_space == 'camera':
v_normal = self.compute_v_normals(verts_camera, faces)
else:
raise NotImplementedError(f"Unknown lighting space: {self.lighting_space}")
v_attr = [v_normal]
v_attr = torch.cat(v_attr, dim=-1)
attr, _ = dr.interpolate(v_attr, rast_out, faces)
normal = attr[..., :3]
normal = V.safe_normalize(normal)
# ---- uv-space attributes ----
texc, texd = dr.interpolate(verts_uv[None, ...], rast_out, faces_uv, rast_db=rast_out_db, diff_attrs='all')
if align_texture_except_fid is not None: # TODO: rethink when shading with normal
fid = rast_out[..., -1:].long() # the face index is shifted by +1
mask = torch.zeros(faces.shape[0]+1, dtype=torch.bool, device=fid.device)
mask[align_texture_except_fid + 1] = True
b, h, w = rast_out.shape[:3]
rast_mask = torch.gather(mask.reshape(1, 1, 1, -1).expand(b, h, w, -1), 3, fid)
texc = torch.where(rast_mask, texc.detach(), texc)
tex = tex.permute(0, 2, 3, 1).contiguous() # (N, T, T, 4)
albedo = dr.texture(tex, texc, texd, filter_mode='linear-mipmap-linear', max_mip_level=None)
# ---- shading ----
diffuse = self.shade(normal, lights)
diffuse_detach_normal = self.shade(normal.detach(), lights)
rgb = albedo * diffuse
alpha = fg_mask.float()
rgba = torch.cat([rgb, alpha], dim=-1)
# ---- background ----
if isinstance(background_color, list):
"""Background as a constant color"""
rgba_bg = torch.tensor(background_color + [0]).to(rgba).expand_as(rgba) # RGBA
elif isinstance(background_color, torch.Tensor):
"""Background as a image"""
rgba_bg = background_color
rgba_bg = torch.cat([rgba_bg, torch.zeros_like(rgba_bg[..., :1])], dim=-1) # RGBA
else:
raise ValueError(f"Unknown background type: {type(background_color)}")
rgba_bg = rgba_bg.flip(1) # opengl camera has y-axis up, needs flipping
rgba = torch.where(fg_mask, rgba, rgba_bg)
rgba_orig = rgba
if enable_disturbance:
# ---- color disturbance ----
B, H, W, _ = rgba.shape
# compute random blending weights based on the disturbance rate
if self.disturb_rate_fg is not None:
w_fg = (torch.rand_like(rgba[..., :1]) < self.disturb_rate_fg).int()
else:
w_fg = torch.zeros_like(rgba[..., :1]).int()
if self.disturb_rate_bg is not None:
w_bg = (torch.rand_like(rgba[..., :1]) < self.disturb_rate_bg).int()
else:
w_bg = torch.zeros_like(rgba[..., :1]).int()
# sample pixles from clusters
fid = rast_out[..., -1:].long() # the face index is shifted by +1
num_clusters = self.fid2cid.max() + 1
fid2cid = self.fid2cid[None, None, None, :].expand(B, H, W, -1)
cid = torch.gather(fid2cid, -1, fid)
out_dict['cid'] = cid.flip(1)
rgba_ = torch.zeros_like(rgba)
for i in range(num_clusters):
c_rgba = rgba_bg if i == 0 else rgba
w = w_bg if i == 0 else w_fg
c_mask = cid == i
c_pixels = c_rgba[c_mask.repeat_interleave(4, dim=-1)].reshape(-1, 4).detach() # NOTE: detach to avoid gradient flow
if i != 1: # skip #1 indicate faces that are not in any cluster
if len(c_pixels) > 0:
c_idx = torch.randint(0, len(c_pixels), (B * H * W, ), device=c_pixels.device)
c_sample = c_pixels[c_idx].reshape(B, H, W, 4)
rgba_ += c_mask * (c_sample * w + c_rgba * (1 - w))
else:
rgba_ += c_mask * c_rgba
rgba = rgba_
# ---- AA on both RGB and alpha channels ----
if align_boundary_except_vid is not None:
verts_clip = self.detach_by_indices(verts_clip, align_boundary_except_vid)
rgba_aa = dr.antialias(rgba, rast_out, verts_clip, faces.int())
aa = ((rgba - rgba_aa) != 0).any(dim=-1, keepdim=True).repeat_interleave(4, dim=-1)
# rgba_aa = torch.where(aa, rgba_aa, rgba_orig) # keep the original color if not antialiased (commented out due to worse tracking performance)
# ---- AA only on RGB channels ----
# rgb = rgba[..., :3].contiguous()
# alpha = rgba[..., 3:]
# rgb = dr.antialias(rgb, rast_out, verts_clip, faces.int())
# rgba = torch.cat([rgb, alpha], dim=-1)
out_dict.update({
'albedo': albedo.flip(1),
'normal': normal.flip(1),
'diffuse': diffuse.flip(1),
'diffuse_detach_normal': diffuse_detach_normal.flip(1),
'rgba': rgba_aa.flip(1),
'aa': aa[..., :3].float().flip(1),
})
return out_dict
def render_without_texture(
self, verts, faces, RT, K, image_size, background_color=[1., 1., 1.],
):
"""
Renders meshes into RGBA images
"""
verts_camera_ = self.world_to_camera(verts, RT)
verts_camera = verts_camera_[..., :3]
verts_clip = self.camera_to_clip(verts_camera_, K, image_size)
tri = faces.int()
rast_out, rast_out_db = dr.rasterize(self.glctx, verts_clip, tri, image_size)
faces = faces.int()
fg_mask = torch.clamp(rast_out[..., -1:], 0, 1).bool()
face_id = torch.clamp(rast_out[..., -1:].long() - 1, 0) # (B, W, H, 1)
W, H = face_id.shape[1:3]
face_normals = self.compute_face_normals(verts_camera, faces) # (B, F, 3)
face_normals_ = face_normals[:, None, None, :, :].expand(-1, W, H, -1, -1) # (B, 1, 1, F, 3)
face_id_ = face_id[:, :, :, None].expand(-1, -1, -1, -1, 3) # (B, W, H, 1, 1)
normal = torch.gather(face_normals_, -2, face_id_).squeeze(-2) # (B, W, H, 3)
albedo = torch.ones_like(normal)
# ---- shading ----
diffuse = self.shade(normal)
rgb = albedo * diffuse
alpha = fg_mask.float()
rgba = torch.cat([rgb, alpha], dim=-1)
# ---- background ----
if isinstance(background_color, list) or isinstance(background_color, tuple):
"""Background as a constant color"""
rgba_bg = torch.tensor(list(background_color) + [0]).to(rgba).expand_as(rgba) # RGBA
elif isinstance(background_color, torch.Tensor):
"""Background as a image"""
rgba_bg = background_color
rgba_bg = torch.cat([rgba_bg, torch.zeros_like(rgba_bg[..., :1])], dim=-1) # RGBA
else:
raise ValueError(f"Unknown background type: {type(background_color)}")
rgba_bg = rgba_bg.flip(1) # opengl camera has y-axis up, needs flipping
normal = torch.where(fg_mask, normal, rgba_bg[..., :3])
diffuse = torch.where(fg_mask, diffuse, rgba_bg[..., :3])
rgba = torch.where(fg_mask, rgba, rgba_bg)
# ---- AA on both RGB and alpha channels ----
rgba_aa = dr.antialias(rgba, rast_out, verts_clip, faces.int())
return {
'albedo': albedo.flip(1),
'normal': normal.flip(1),
'diffuse': diffuse.flip(1),
'rgba': rgba_aa.flip(1),
'verts_clip': verts_clip,
}
def render_v_color(
self, verts, v_color, faces, RT, K, image_size, background_color=[1., 1., 1.],
):
"""
Renders meshes into RGBA images
"""
verts_camera_ = self.world_to_camera(verts, RT)
verts_camera = verts_camera_[..., :3]
verts_clip = self.camera_to_clip(verts_camera_, K, image_size)
tri = faces.int()
rast_out, rast_out_db = dr.rasterize(self.glctx, verts_clip, tri, image_size)
faces = faces.int()
fg_mask = torch.clamp(rast_out[..., -1:], 0, 1).bool()
face_id = torch.clamp(rast_out[..., -1:].long() - 1, 0) # (B, W, H, 1)
W, H = face_id.shape[1:3]
face_normals = self.compute_face_normals(verts_camera, faces) # (B, F, 3)
face_normals_ = face_normals[:, None, None, :, :].expand(-1, W, H, -1, -1) # (B, 1, 1, F, 3)
face_id_ = face_id[:, :, :, None].expand(-1, -1, -1, -1, 3) # (B, W, H, 1, 1)
normal = torch.gather(face_normals_, -2, face_id_).squeeze(-2) # (B, W, H, 3)
albedo = torch.ones_like(normal)
v_attr = [v_color]
v_attr = torch.cat(v_attr, dim=-1)
attr, _ = dr.interpolate(v_attr, rast_out, faces)
albedo = attr[..., :3]
# ---- shading ----
diffuse = self.shade(normal)
rgb = albedo * diffuse
alpha = fg_mask.float()
rgba = torch.cat([rgb, alpha], dim=-1)
# ---- background ----
if isinstance(background_color, list) or isinstance(background_color, tuple):
"""Background as a constant color"""
rgba_bg = torch.tensor(list(background_color) + [0]).to(rgba).expand_as(rgba) # RGBA
elif isinstance(background_color, torch.Tensor):
"""Background as a image"""
rgba_bg = background_color
rgba_bg = torch.cat([rgba_bg, torch.zeros_like(rgba_bg[..., :1])], dim=-1) # RGBA
else:
raise ValueError(f"Unknown background type: {type(background_color)}")
rgba_bg = rgba_bg.flip(1) # opengl camera has y-axis up, needs flipping
normal = torch.where(fg_mask, normal, rgba_bg[..., :3])
diffuse = torch.where(fg_mask, diffuse, rgba_bg[..., :3])
rgba = torch.where(fg_mask, rgba, rgba_bg)
# ---- AA on both RGB and alpha channels ----
rgba_aa = dr.antialias(rgba, rast_out, verts_clip, faces.int())
return {
'albedo': albedo.flip(1),
'normal': normal.flip(1),
'diffuse': diffuse.flip(1),
'rgba': rgba_aa.flip(1),
}
|