Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import cv2 | |
import math | |
import torch | |
import numpy as np | |
import torch.nn.functional as F | |
from collections import OrderedDict | |
from scipy.ndimage import morphology | |
from skimage.io import imsave | |
def dict2obj(d): | |
if isinstance(d, list): | |
d = [dict2obj(x) for x in d] | |
if not isinstance(d, dict): | |
return d | |
class C(object): | |
pass | |
o = C() | |
for k in d: | |
o.__dict__[k] = dict2obj(d[k]) | |
return o | |
def check_mkdir(path): | |
if not os.path.exists(path): | |
print('making %s' % path) | |
os.makedirs(path) | |
def l2_distance(verts1, verts2): | |
return torch.sqrt(((verts1 - verts2) ** 2).sum(2)).mean(1).mean() | |
def quat2mat(quat): | |
"""Convert quaternion coefficients to rotation matrix. | |
Args: | |
quat: size = [B, 4] 4 <===>(w, x, y, z) | |
Returns: | |
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] | |
""" | |
norm_quat = quat | |
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) | |
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] | |
B = quat.size(0) | |
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
wx, wy, wz = w * x, w * y, w * z | |
xy, xz, yz = x * y, x * z, y * z | |
rotMat = torch.stack([w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, | |
2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx, | |
2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3) | |
return rotMat | |
def batch_rodrigues(theta): | |
# theta N x 3 | |
batch_size = theta.shape[0] | |
l1norm = torch.norm(theta + 1e-8, p=2, dim=1) | |
angle = torch.unsqueeze(l1norm, -1) | |
normalized = torch.div(theta, angle) | |
angle = angle * 0.5 | |
v_cos = torch.cos(angle) | |
v_sin = torch.sin(angle) | |
quat = torch.cat([v_cos, v_sin * normalized], dim=1) | |
return quat2mat(quat) | |
def batch_orth_proj(X, camera): | |
''' | |
X is N x num_points x 3 | |
''' | |
camera = camera.clone().view(-1, 1, 3) | |
X_trans = X[:, :, :2] + camera[:, :, 1:] | |
X_trans = torch.cat([X_trans, X[:, :, 2:]], 2) | |
shape = X_trans.shape | |
# Xn = (camera[:, :, 0] * X_trans.view(shape[0], -1)).view(shape) | |
Xn = (camera[:, :, 0:1] * X_trans) | |
return Xn | |
def batch_persp_proj(vertices, cam, f, t, orig_size=256, eps=1e-9): | |
''' | |
Calculate projective transformation of vertices given a projection matrix | |
Input parameters: | |
f: torch tensor of focal length | |
t: batch_size * 1 * 3 xyz translation in world coordinate | |
K: batch_size * 3 * 3 intrinsic camera matrix | |
R, t: batch_size * 3 * 3, batch_size * 1 * 3 extrinsic calibration parameters | |
dist_coeffs: vector of distortion coefficients | |
orig_size: original size of image captured by the camera | |
Returns: For each point [X,Y,Z] in world coordinates [u,v,z] where u,v are the coordinates of the projection in | |
pixels and z is the depth | |
''' | |
device = vertices.device | |
K = torch.tensor([f, 0., cam['c'][0], 0., f, cam['c'][1], 0., 0., 1.]).view(3, 3)[None, ...].repeat( | |
vertices.shape[0], 1).to(device) | |
R = batch_rodrigues(cam['r'][None, ...].repeat(vertices.shape[0], 1)).to(device) | |
dist_coeffs = cam['k'][None, ...].repeat(vertices.shape[0], 1).to(device) | |
vertices = torch.matmul(vertices, R.transpose(2, 1)) + t | |
x, y, z = vertices[:, :, 0], vertices[:, :, 1], vertices[:, :, 2] | |
x_ = x / (z + eps) | |
y_ = y / (z + eps) | |
# Get distortion coefficients from vector | |
k1 = dist_coeffs[:, None, 0] | |
k2 = dist_coeffs[:, None, 1] | |
p1 = dist_coeffs[:, None, 2] | |
p2 = dist_coeffs[:, None, 3] | |
k3 = dist_coeffs[:, None, 4] | |
# we use x_ for x' and x__ for x'' etc. | |
r = torch.sqrt(x_ ** 2 + y_ ** 2) | |
x__ = x_ * (1 + k1 * (r ** 2) + k2 * (r ** 4) + k3 * (r ** 6)) + 2 * p1 * x_ * y_ + p2 * (r ** 2 + 2 * x_ ** 2) | |
y__ = y_ * (1 + k1 * (r ** 2) + k2 * (r ** 4) + k3 * (r ** 6)) + p1 * (r ** 2 + 2 * y_ ** 2) + 2 * p2 * x_ * y_ | |
vertices = torch.stack([x__, y__, torch.ones_like(z)], dim=-1) | |
vertices = torch.matmul(vertices, K.transpose(1, 2)) | |
u, v = vertices[:, :, 0], vertices[:, :, 1] | |
v = orig_size - v | |
# map u,v from [0, img_size] to [-1, 1] to be compatible with the renderer | |
u = 2 * (u - orig_size / 2.) / orig_size | |
v = 2 * (v - orig_size / 2.) / orig_size | |
vertices = torch.stack([u, v, z], dim=-1) | |
return vertices | |
def face_vertices(vertices, faces): | |
""" | |
:param vertices: [batch size, number of vertices, 3] | |
:param faces: [batch size, number of faces, 3] | |
:return: [batch size, number of faces, 3, 3] | |
""" | |
assert (vertices.ndimension() == 3) | |
assert (faces.ndimension() == 3) | |
assert (vertices.shape[0] == faces.shape[0]) | |
assert (vertices.shape[2] == 3) | |
assert (faces.shape[2] == 3) | |
bs, nv = vertices.shape[:2] | |
bs, nf = faces.shape[:2] | |
device = vertices.device | |
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] | |
vertices = vertices.reshape((bs * nv, 3)) | |
# pytorch only supports long and byte tensors for indexing | |
return vertices[faces.long()] | |
def vertex_normals(vertices, faces): | |
""" | |
:param vertices: [batch size, number of vertices, 3] | |
:param faces: [batch size, number of faces, 3] | |
:return: [batch size, number of vertices, 3] | |
""" | |
assert (vertices.ndimension() == 3) | |
assert (faces.ndimension() == 3) | |
assert (vertices.shape[0] == faces.shape[0]) | |
assert (vertices.shape[2] == 3) | |
assert (faces.shape[2] == 3) | |
bs, nv = vertices.shape[:2] | |
bs, nf = faces.shape[:2] | |
device = vertices.device | |
normals = torch.zeros(bs * nv, 3).to(device) | |
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] # expanded faces | |
vertices_faces = vertices.reshape((bs * nv, 3))[faces.long()] | |
faces = faces.view(-1, 3) | |
vertices_faces = vertices_faces.view(-1, 3, 3) | |
normals.index_add_(0, faces[:, 1].long(), | |
torch.cross(vertices_faces[:, 2] - vertices_faces[:, 1], vertices_faces[:, 0] - vertices_faces[:, 1])) | |
normals.index_add_(0, faces[:, 2].long(), | |
torch.cross(vertices_faces[:, 0] - vertices_faces[:, 2], vertices_faces[:, 1] - vertices_faces[:, 2])) | |
normals.index_add_(0, faces[:, 0].long(), | |
torch.cross(vertices_faces[:, 1] - vertices_faces[:, 0], vertices_faces[:, 2] - vertices_faces[:, 0])) | |
normals = F.normalize(normals, eps=1e-6, dim=1) | |
normals = normals.reshape((bs, nv, 3)) | |
# pytorch only supports long and byte tensors for indexing | |
return normals | |
def tensor_vis_landmarks(images, landmarks, gt_landmarks=None, color='g', isScale=True): | |
# visualize landmarks | |
vis_landmarks = [] | |
images = images.cpu().numpy() | |
predicted_landmarks = landmarks.detach().cpu().numpy() | |
if gt_landmarks is not None: | |
gt_landmarks_np = gt_landmarks.detach().cpu().numpy() | |
for i in range(images.shape[0]): | |
image = images[i] | |
image = image.transpose(1, 2, 0)[:, :, [2, 1, 0]].copy(); | |
image = (image * 255) | |
if isScale: | |
predicted_landmark = predicted_landmarks[i] * image.shape[0] / 2 + image.shape[0] / 2 | |
else: | |
predicted_landmark = predicted_landmarks[i] | |
if predicted_landmark.shape[0] == 68: | |
image_landmarks = plot_kpts(image, predicted_landmark, color) | |
if gt_landmarks is not None: | |
image_landmarks = plot_verts(image_landmarks, | |
gt_landmarks_np[i] * image.shape[0] / 2 + image.shape[0] / 2, 'r') | |
else: | |
image_landmarks = plot_verts(image, predicted_landmark, color) | |
if gt_landmarks is not None: | |
image_landmarks = plot_verts(image_landmarks, | |
gt_landmarks_np[i] * image.shape[0] / 2 + image.shape[0] / 2, 'r') | |
vis_landmarks.append(image_landmarks) | |
vis_landmarks = np.stack(vis_landmarks) | |
vis_landmarks = torch.from_numpy( | |
vis_landmarks[:, :, :, [2, 1, 0]].transpose(0, 3, 1, 2)) / 255. # , dtype=torch.float32) | |
return vis_landmarks | |
end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype = np.int32) - 1 | |
def plot_kpts(image, kpts, color = 'r'): | |
''' Draw 68 key points | |
Args: | |
image: the input image | |
kpt: (68, 3). | |
''' | |
if color == 'r': | |
c = (255, 0, 0) | |
elif color == 'g': | |
c = (0, 255, 0) | |
elif color == 'b': | |
c = (255, 0, 0) | |
image = image.copy() | |
kpts = kpts.copy() | |
for i in range(kpts.shape[0]): | |
st = kpts[i, :2] | |
if kpts.shape[1]==4: | |
if kpts[i, 3] > 0.5: | |
c = (0, 255, 0) | |
else: | |
c = (0, 0, 255) | |
image = cv2.circle(image,(st[0], st[1]), 1, c, 2) | |
if i in end_list: | |
continue | |
ed = kpts[i + 1, :2] | |
image = cv2.line(image, (st[0], st[1]), (ed[0], ed[1]), (255, 255, 255), 1) | |
return image | |
def save_obj(filename, vertices, faces, textures=None, uvcoords=None, uvfaces=None, texture_type='surface'): | |
assert vertices.ndimension() == 2 | |
assert faces.ndimension() == 2 | |
assert texture_type in ['surface', 'vertex'] | |
# assert texture_res >= 2 | |
if textures is not None and texture_type == 'surface': | |
textures =textures.detach().cpu().numpy().transpose(1,2,0) | |
filename_mtl = filename[:-4] + '.mtl' | |
filename_texture = filename[:-4] + '.png' | |
material_name = 'material_1' | |
# texture_image, vertices_textures = create_texture_image(textures, texture_res) | |
texture_image = textures | |
texture_image = texture_image.clip(0, 1) | |
texture_image = (texture_image * 255).astype('uint8') | |
imsave(filename_texture, texture_image) | |
faces = faces.detach().cpu().numpy() | |
with open(filename, 'w') as f: | |
f.write('# %s\n' % os.path.basename(filename)) | |
f.write('#\n') | |
f.write('\n') | |
if textures is not None and texture_type != "vertex": | |
f.write('mtllib %s\n\n' % os.path.basename(filename_mtl)) | |
if textures is not None and texture_type == 'vertex': | |
for vertex, color in zip(vertices, textures): | |
f.write('v %.8f %.8f %.8f %.8f %.8f %.8f\n' % (vertex[0], vertex[1], vertex[2], | |
color[0], color[1], color[2])) | |
f.write('\n') | |
else: | |
for vertex in vertices: | |
f.write('v %.8f %.8f %.8f\n' % (vertex[0], vertex[1], vertex[2])) | |
f.write('\n') | |
if textures is not None and texture_type == 'surface': | |
for vertex in uvcoords.reshape((-1, 2)): | |
f.write('vt %.8f %.8f\n' % (vertex[0], vertex[1])) | |
f.write('\n') | |
f.write('usemtl %s\n' % material_name) | |
for i, face in enumerate(faces): | |
f.write('f %d/%d %d/%d %d/%d\n' % ( | |
face[0] + 1, uvfaces[i,0]+1, face[1] + 1, uvfaces[i,1]+1, face[2] + 1, uvfaces[i,2]+1)) | |
f.write('\n') | |
else: | |
for face in faces: | |
f.write('f %d %d %d\n' % (face[0] + 1, face[1] + 1, face[2] + 1)) | |
if textures is not None and texture_type == 'surface': | |
with open(filename_mtl, 'w') as f: | |
f.write('newmtl %s\n' % material_name) | |
f.write('map_Kd %s\n' % os.path.basename(filename_texture)) | |
def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: | |
return torch.sum(x*y, -1, keepdim=True) | |
def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor: | |
return 2*dot(x, n)*n - x | |
def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: | |
return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN | |
def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: | |
return x / length(x, eps) | |
def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor: | |
return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w) | |
def compute_face_normals(verts, faces): | |
i0 = faces[..., 0].long() | |
i1 = faces[..., 1].long() | |
i2 = faces[..., 2].long() | |
v0 = verts[..., i0, :] | |
v1 = verts[..., i1, :] | |
v2 = verts[..., i2, :] | |
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1) | |
return face_normals | |
def compute_face_orientation(verts, faces, return_scale=False): | |
i0 = faces[..., 0].long() | |
i1 = faces[..., 1].long() | |
i2 = faces[..., 2].long() | |
v0 = verts[..., i0, :] | |
v1 = verts[..., i1, :] | |
v2 = verts[..., i2, :] | |
a0 = safe_normalize(v1 - v0) | |
a1 = safe_normalize(torch.cross(a0, v2 - v0, dim=-1)) | |
a2 = -safe_normalize(torch.cross(a1, a0, dim=-1)) # will have artifacts without negation | |
orientation = torch.cat([a0[..., None], a1[..., None], a2[..., None]], dim=-1) | |
if return_scale: | |
s0 = length(v1 - v0) | |
s1 = dot(a2, (v2 - v0)).abs() | |
scale = (s0 + s1) / 2 | |
else: | |
scale = None | |
return orientation, scale | |
def compute_vertex_normals(verts, faces): | |
i0 = faces[..., 0].long() | |
i1 = faces[..., 1].long() | |
i2 = faces[..., 2].long() | |
v0 = verts[..., i0, :] | |
v1 = verts[..., i1, :] | |
v2 = verts[..., i2, :] | |
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1) | |
v_normals = torch.zeros_like(verts) | |
N = verts.shape[0] | |
v_normals.scatter_add_(1, i0[..., None].repeat(N, 1, 3), face_normals) | |
v_normals.scatter_add_(1, i1[..., None].repeat(N, 1, 3), face_normals) | |
v_normals.scatter_add_(1, i2[..., None].repeat(N, 1, 3), face_normals) | |
v_normals = torch.where(dot(v_normals, v_normals) > 1e-20, v_normals, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda')) | |
v_normals = safe_normalize(v_normals) | |
if torch.is_anomaly_enabled(): | |
assert torch.all(torch.isfinite(v_normals)) | |
return v_normals |