File size: 13,950 Bytes
17cd746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import os
import cv2
import math
import torch
import numpy as np
import torch.nn.functional as F
from collections import OrderedDict
from scipy.ndimage import morphology
from skimage.io import imsave


def dict2obj(d):
    if isinstance(d, list):
        d = [dict2obj(x) for x in d]
    if not isinstance(d, dict):
        return d

    class C(object):
        pass

    o = C()
    for k in d:
        o.__dict__[k] = dict2obj(d[k])
    return o


def check_mkdir(path):
    if not os.path.exists(path):
        print('making %s' % path)
        os.makedirs(path)


def l2_distance(verts1, verts2):
    return torch.sqrt(((verts1 - verts2) ** 2).sum(2)).mean(1).mean()


def quat2mat(quat):
    """Convert quaternion coefficients to rotation matrix.
    Args:
        quat: size = [B, 4] 4 <===>(w, x, y, z)
    Returns:
        Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
    """
    norm_quat = quat
    norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
    w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3]

    B = quat.size(0)

    w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
    wx, wy, wz = w * x, w * y, w * z
    xy, xz, yz = x * y, x * z, y * z

    rotMat = torch.stack([w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz,
                          2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx,
                          2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
    return rotMat


def batch_rodrigues(theta):
    # theta N x 3
    batch_size = theta.shape[0]
    l1norm = torch.norm(theta + 1e-8, p=2, dim=1)
    angle = torch.unsqueeze(l1norm, -1)
    normalized = torch.div(theta, angle)
    angle = angle * 0.5
    v_cos = torch.cos(angle)
    v_sin = torch.sin(angle)
    quat = torch.cat([v_cos, v_sin * normalized], dim=1)

    return quat2mat(quat)


def batch_orth_proj(X, camera):
    '''
        X is N x num_points x 3
    '''
    camera = camera.clone().view(-1, 1, 3)
    X_trans = X[:, :, :2] + camera[:, :, 1:]
    X_trans = torch.cat([X_trans, X[:, :, 2:]], 2)
    shape = X_trans.shape
    # Xn = (camera[:, :, 0] * X_trans.view(shape[0], -1)).view(shape)
    Xn = (camera[:, :, 0:1] * X_trans)
    return Xn


def batch_persp_proj(vertices, cam, f, t, orig_size=256, eps=1e-9):
    '''
    Calculate projective transformation of vertices given a projection matrix
    Input parameters:
    f: torch tensor of focal length
    t: batch_size * 1 * 3 xyz translation in world coordinate
    K: batch_size * 3 * 3 intrinsic camera matrix
    R, t: batch_size * 3 * 3, batch_size * 1 * 3 extrinsic calibration parameters
    dist_coeffs: vector of distortion coefficients
    orig_size: original size of image captured by the camera
    Returns: For each point [X,Y,Z] in world coordinates [u,v,z] where u,v are the coordinates of the projection in
    pixels and z is the depth
    '''
    device = vertices.device

    K = torch.tensor([f, 0., cam['c'][0], 0., f, cam['c'][1], 0., 0., 1.]).view(3, 3)[None, ...].repeat(
        vertices.shape[0], 1).to(device)
    R = batch_rodrigues(cam['r'][None, ...].repeat(vertices.shape[0], 1)).to(device)
    dist_coeffs = cam['k'][None, ...].repeat(vertices.shape[0], 1).to(device)

    vertices = torch.matmul(vertices, R.transpose(2, 1)) + t
    x, y, z = vertices[:, :, 0], vertices[:, :, 1], vertices[:, :, 2]
    x_ = x / (z + eps)
    y_ = y / (z + eps)

    # Get distortion coefficients from vector
    k1 = dist_coeffs[:, None, 0]
    k2 = dist_coeffs[:, None, 1]
    p1 = dist_coeffs[:, None, 2]
    p2 = dist_coeffs[:, None, 3]
    k3 = dist_coeffs[:, None, 4]

    # we use x_ for x' and x__ for x'' etc.
    r = torch.sqrt(x_ ** 2 + y_ ** 2)
    x__ = x_ * (1 + k1 * (r ** 2) + k2 * (r ** 4) + k3 * (r ** 6)) + 2 * p1 * x_ * y_ + p2 * (r ** 2 + 2 * x_ ** 2)
    y__ = y_ * (1 + k1 * (r ** 2) + k2 * (r ** 4) + k3 * (r ** 6)) + p1 * (r ** 2 + 2 * y_ ** 2) + 2 * p2 * x_ * y_
    vertices = torch.stack([x__, y__, torch.ones_like(z)], dim=-1)
    vertices = torch.matmul(vertices, K.transpose(1, 2))
    u, v = vertices[:, :, 0], vertices[:, :, 1]
    v = orig_size - v
    # map u,v from [0, img_size] to [-1, 1] to be compatible with the renderer
    u = 2 * (u - orig_size / 2.) / orig_size
    v = 2 * (v - orig_size / 2.) / orig_size
    vertices = torch.stack([u, v, z], dim=-1)

    return vertices


def face_vertices(vertices, faces):
    """
    :param vertices: [batch size, number of vertices, 3]
    :param faces: [batch size, number of faces, 3]
    :return: [batch size, number of faces, 3, 3]
    """
    assert (vertices.ndimension() == 3)
    assert (faces.ndimension() == 3)
    assert (vertices.shape[0] == faces.shape[0])
    assert (vertices.shape[2] == 3)
    assert (faces.shape[2] == 3)

    bs, nv = vertices.shape[:2]
    bs, nf = faces.shape[:2]
    device = vertices.device
    faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
    vertices = vertices.reshape((bs * nv, 3))
    # pytorch only supports long and byte tensors for indexing
    return vertices[faces.long()]


def vertex_normals(vertices, faces):
    """
    :param vertices: [batch size, number of vertices, 3]
    :param faces: [batch size, number of faces, 3]
    :return: [batch size, number of vertices, 3]
    """
    assert (vertices.ndimension() == 3)
    assert (faces.ndimension() == 3)
    assert (vertices.shape[0] == faces.shape[0])
    assert (vertices.shape[2] == 3)
    assert (faces.shape[2] == 3)

    bs, nv = vertices.shape[:2]
    bs, nf = faces.shape[:2]
    device = vertices.device
    normals = torch.zeros(bs * nv, 3).to(device)

    faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] # expanded faces
    vertices_faces = vertices.reshape((bs * nv, 3))[faces.long()]

    faces = faces.view(-1, 3)
    vertices_faces = vertices_faces.view(-1, 3, 3)

    normals.index_add_(0, faces[:, 1].long(),
                       torch.cross(vertices_faces[:, 2] - vertices_faces[:, 1], vertices_faces[:, 0] - vertices_faces[:, 1]))
    normals.index_add_(0, faces[:, 2].long(),
                       torch.cross(vertices_faces[:, 0] - vertices_faces[:, 2], vertices_faces[:, 1] - vertices_faces[:, 2]))
    normals.index_add_(0, faces[:, 0].long(),
                       torch.cross(vertices_faces[:, 1] - vertices_faces[:, 0], vertices_faces[:, 2] - vertices_faces[:, 0]))

    normals = F.normalize(normals, eps=1e-6, dim=1)
    normals = normals.reshape((bs, nv, 3))
    # pytorch only supports long and byte tensors for indexing
    return normals


def tensor_vis_landmarks(images, landmarks, gt_landmarks=None, color='g', isScale=True):
    # visualize landmarks
    vis_landmarks = []
    images = images.cpu().numpy()
    predicted_landmarks = landmarks.detach().cpu().numpy()
    if gt_landmarks is not None:
        gt_landmarks_np = gt_landmarks.detach().cpu().numpy()
    for i in range(images.shape[0]):
        image = images[i]
        image = image.transpose(1, 2, 0)[:, :, [2, 1, 0]].copy();
        image = (image * 255)
        if isScale:
            predicted_landmark = predicted_landmarks[i] * image.shape[0] / 2 + image.shape[0] / 2
        else:
            predicted_landmark = predicted_landmarks[i]

        if predicted_landmark.shape[0] == 68:
            image_landmarks = plot_kpts(image, predicted_landmark, color)
            if gt_landmarks is not None:
                image_landmarks = plot_verts(image_landmarks,
                                             gt_landmarks_np[i] * image.shape[0] / 2 + image.shape[0] / 2, 'r')
        else:
            image_landmarks = plot_verts(image, predicted_landmark, color)
            if gt_landmarks is not None:
                image_landmarks = plot_verts(image_landmarks,
                                             gt_landmarks_np[i] * image.shape[0] / 2 + image.shape[0] / 2, 'r')

        vis_landmarks.append(image_landmarks)

    vis_landmarks = np.stack(vis_landmarks)
    vis_landmarks = torch.from_numpy(
        vis_landmarks[:, :, :, [2, 1, 0]].transpose(0, 3, 1, 2)) / 255.  # , dtype=torch.float32)
    return vis_landmarks


end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype = np.int32) - 1
def plot_kpts(image, kpts, color = 'r'):
    ''' Draw 68 key points
    Args:
        image: the input image
        kpt: (68, 3).
    '''
    if color == 'r':
        c = (255, 0, 0)
    elif color == 'g':
        c = (0, 255, 0)
    elif color == 'b':
        c = (255, 0, 0)
    image = image.copy()
    kpts = kpts.copy()

    for i in range(kpts.shape[0]):
        st = kpts[i, :2]
        if kpts.shape[1]==4:
            if kpts[i, 3] > 0.5:
                c = (0, 255, 0)
            else:
                c = (0, 0, 255)
        image = cv2.circle(image,(st[0], st[1]), 1, c, 2)
        if i in end_list:
            continue
        ed = kpts[i + 1, :2]
        image = cv2.line(image, (st[0], st[1]), (ed[0], ed[1]), (255, 255, 255), 1)

    return image


def save_obj(filename, vertices, faces, textures=None, uvcoords=None, uvfaces=None, texture_type='surface'):
    assert vertices.ndimension() == 2
    assert faces.ndimension() == 2
    assert texture_type in ['surface', 'vertex']
    # assert texture_res >= 2

    if textures is not None and texture_type == 'surface':
        textures =textures.detach().cpu().numpy().transpose(1,2,0)
        filename_mtl = filename[:-4] + '.mtl'
        filename_texture = filename[:-4] + '.png'
        material_name = 'material_1'
        # texture_image, vertices_textures = create_texture_image(textures, texture_res)
        texture_image = textures
        texture_image = texture_image.clip(0, 1)
        texture_image = (texture_image * 255).astype('uint8')
        imsave(filename_texture, texture_image)

    faces = faces.detach().cpu().numpy()

    with open(filename, 'w') as f:
        f.write('# %s\n' % os.path.basename(filename))
        f.write('#\n')
        f.write('\n')

        if textures is not None and texture_type != "vertex":
            f.write('mtllib %s\n\n' % os.path.basename(filename_mtl))

        if textures is not None and texture_type == 'vertex':
            for vertex, color in zip(vertices, textures):
                f.write('v %.8f %.8f %.8f %.8f %.8f %.8f\n' % (vertex[0], vertex[1], vertex[2],
                                                               color[0], color[1], color[2]))
            f.write('\n')
        else:
            for vertex in vertices:
                f.write('v %.8f %.8f %.8f\n' % (vertex[0], vertex[1], vertex[2]))
            f.write('\n')

        if textures is not None and texture_type == 'surface':
            for vertex in uvcoords.reshape((-1, 2)):
                f.write('vt %.8f %.8f\n' % (vertex[0], vertex[1]))
            f.write('\n')

            f.write('usemtl %s\n' % material_name)
            for i, face in enumerate(faces):
                f.write('f %d/%d %d/%d %d/%d\n' % (
                    face[0] + 1, uvfaces[i,0]+1, face[1] + 1, uvfaces[i,1]+1, face[2] + 1, uvfaces[i,2]+1))
            f.write('\n')
        else:
            for face in faces:
                f.write('f %d %d %d\n' % (face[0] + 1, face[1] + 1, face[2] + 1))

    if textures is not None and texture_type == 'surface':
        with open(filename_mtl, 'w') as f:
            f.write('newmtl %s\n' % material_name)
            f.write('map_Kd %s\n' % os.path.basename(filename_texture))


def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
    return torch.sum(x*y, -1, keepdim=True)

def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor:
    return 2*dot(x, n)*n - x

def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
    return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN

def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
    return x / length(x, eps)

def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor:
    return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w)

def compute_face_normals(verts, faces):
    i0 = faces[..., 0].long()
    i1 = faces[..., 1].long()
    i2 = faces[..., 2].long()

    v0 = verts[..., i0, :]
    v1 = verts[..., i1, :]
    v2 = verts[..., i2, :]
    face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
    return face_normals

def compute_face_orientation(verts, faces, return_scale=False):
    i0 = faces[..., 0].long()
    i1 = faces[..., 1].long()
    i2 = faces[..., 2].long()

    v0 = verts[..., i0, :]
    v1 = verts[..., i1, :]
    v2 = verts[..., i2, :]

    a0 = safe_normalize(v1 - v0)
    a1 = safe_normalize(torch.cross(a0, v2 - v0, dim=-1))
    a2 = -safe_normalize(torch.cross(a1, a0, dim=-1))  # will have artifacts without negation

    orientation = torch.cat([a0[..., None], a1[..., None], a2[..., None]], dim=-1)

    if return_scale:
        s0 = length(v1 - v0)
        s1 = dot(a2, (v2 - v0)).abs()
        scale = (s0 + s1) / 2
    else:
        scale = None
    return orientation, scale

def compute_vertex_normals(verts, faces):
    i0 = faces[..., 0].long()
    i1 = faces[..., 1].long()
    i2 = faces[..., 2].long()

    v0 = verts[..., i0, :]
    v1 = verts[..., i1, :]
    v2 = verts[..., i2, :]
    face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
    v_normals = torch.zeros_like(verts)
    N = verts.shape[0]
    v_normals.scatter_add_(1, i0[..., None].repeat(N, 1, 3), face_normals)
    v_normals.scatter_add_(1, i1[..., None].repeat(N, 1, 3), face_normals)
    v_normals.scatter_add_(1, i2[..., None].repeat(N, 1, 3), face_normals)

    v_normals = torch.where(dot(v_normals, v_normals) > 1e-20, v_normals, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda'))
    v_normals = safe_normalize(v_normals)
    if torch.is_anomaly_enabled():
        assert torch.all(torch.isfinite(v_normals))
    return v_normals