Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2023-2024, Zexin He | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import time | |
import math | |
from collections import defaultdict | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from accelerate.logging import get_logger | |
from einops import rearrange, repeat | |
from .transformer import TransformerDecoder | |
from lam.models.rendering.gs_renderer import GS3DRenderer, PointEmbed | |
from diffusers.utils import is_torch_version | |
logger = get_logger(__name__) | |
class ModelLAM(nn.Module): | |
""" | |
Full model of the basic single-view large reconstruction model. | |
""" | |
def __init__(self, | |
transformer_dim: int, transformer_layers: int, transformer_heads: int, | |
transformer_type="cond", | |
tf_grad_ckpt=False, | |
encoder_grad_ckpt=False, | |
encoder_freeze: bool = True, encoder_type: str = 'dino', | |
encoder_model_name: str = 'facebook/dino-vitb16', encoder_feat_dim: int = 768, | |
num_pcl: int=2048, pcl_dim: int=512, | |
human_model_path=None, | |
flame_subdivide_num=2, | |
flame_type="flame", | |
gs_query_dim=None, | |
gs_use_rgb=False, | |
gs_sh=3, | |
gs_mlp_network_config=None, | |
gs_xyz_offset_max_step=1.8 / 32, | |
gs_clip_scaling=0.2, | |
shape_param_dim=100, | |
expr_param_dim=50, | |
fix_opacity=False, | |
fix_rotation=False, | |
flame_scale=1.0, | |
**kwargs, | |
): | |
super().__init__() | |
self.gradient_checkpointing = tf_grad_ckpt | |
self.encoder_gradient_checkpointing = encoder_grad_ckpt | |
# attributes | |
self.encoder_feat_dim = encoder_feat_dim | |
self.conf_use_pred_img = False | |
self.conf_cat_feat = False and self.conf_use_pred_img # True # False | |
# modules | |
# image encoder | |
self.encoder = self._encoder_fn(encoder_type)( | |
model_name=encoder_model_name, | |
freeze=encoder_freeze, | |
encoder_feat_dim=encoder_feat_dim, | |
) | |
# learnable points embedding | |
skip_decoder = False | |
self.latent_query_points_type = kwargs.get("latent_query_points_type", "e2e_flame") | |
if self.latent_query_points_type == "embedding": | |
self.num_pcl = num_pcl | |
self.pcl_embeddings = nn.Embedding(num_pcl , pcl_dim) | |
elif self.latent_query_points_type.startswith("flame"): | |
latent_query_points_file = os.path.join(human_model_path, "flame_points", f"{self.latent_query_points_type}.npy") | |
pcl_embeddings = torch.from_numpy(np.load(latent_query_points_file)).float() | |
print(f"==========load flame points:{latent_query_points_file}, shape:{pcl_embeddings.shape}") | |
self.register_buffer("pcl_embeddings", pcl_embeddings) | |
self.pcl_embed = PointEmbed(dim=pcl_dim) | |
elif self.latent_query_points_type.startswith("e2e_flame"): | |
skip_decoder = True | |
self.pcl_embed = PointEmbed(dim=pcl_dim) | |
else: | |
raise NotImplementedError | |
print("==="*16*3, f"\nskip_decoder: {skip_decoder}", "\n"+"==="*16*3) | |
# transformer | |
self.transformer = TransformerDecoder( | |
block_type=transformer_type, | |
num_layers=transformer_layers, num_heads=transformer_heads, | |
inner_dim=transformer_dim, cond_dim=encoder_feat_dim, mod_dim=None, | |
gradient_checkpointing=self.gradient_checkpointing, | |
) | |
# renderer | |
self.renderer = GS3DRenderer(human_model_path=human_model_path, | |
subdivide_num=flame_subdivide_num, | |
smpl_type=flame_type, | |
feat_dim=transformer_dim, | |
query_dim=gs_query_dim, | |
use_rgb=gs_use_rgb, | |
sh_degree=gs_sh, | |
mlp_network_config=gs_mlp_network_config, | |
xyz_offset_max_step=gs_xyz_offset_max_step, | |
clip_scaling=gs_clip_scaling, | |
scale_sphere=kwargs.get("scale_sphere", False), | |
shape_param_dim=shape_param_dim, | |
expr_param_dim=expr_param_dim, | |
fix_opacity=fix_opacity, | |
fix_rotation=fix_rotation, | |
skip_decoder=skip_decoder, | |
decode_with_extra_info=kwargs.get("decode_with_extra_info", None), | |
gradient_checkpointing=self.gradient_checkpointing, | |
add_teeth=kwargs.get("add_teeth", True), | |
teeth_bs_flag=kwargs.get("teeth_bs_flag", False), | |
oral_mesh_flag=kwargs.get("oral_mesh_flag", False), | |
use_mesh_shading=kwargs.get('use_mesh_shading', False), | |
render_rgb=kwargs.get("render_rgb", True), | |
) | |
def get_last_layer(self): | |
return self.renderer.gs_net.out_layers["shs"].weight | |
def _encoder_fn(encoder_type: str): | |
encoder_type = encoder_type.lower() | |
assert encoder_type in ['dino', 'dinov2', 'dinov2_unet', 'resunet', 'dinov2_featup', 'dinov2_dpt', 'dinov2_fusion'], "Unsupported encoder type" | |
if encoder_type == 'dino': | |
from .encoders.dino_wrapper import DinoWrapper | |
# logger.info("Using DINO as the encoder") | |
return DinoWrapper | |
elif encoder_type == 'dinov2': | |
from .encoders.dinov2_wrapper import Dinov2Wrapper | |
# logger.info("Using DINOv2 as the encoder") | |
return Dinov2Wrapper | |
elif encoder_type == 'dinov2_unet': | |
from .encoders.dinov2_unet_wrapper import Dinov2UnetWrapper | |
# logger.info("Using Dinov2Unet as the encoder") | |
return Dinov2UnetWrapper | |
elif encoder_type == 'resunet': | |
from .encoders.xunet_wrapper import XnetWrapper | |
# logger.info("Using XnetWrapper as the encoder") | |
return XnetWrapper | |
elif encoder_type == 'dinov2_featup': | |
from .encoders.dinov2_featup_wrapper import Dinov2FeatUpWrapper | |
# logger.info("Using Dinov2FeatUpWrapper as the encoder") | |
return Dinov2FeatUpWrapper | |
elif encoder_type == 'dinov2_dpt': | |
from .encoders.dinov2_dpt_wrapper import Dinov2DPTWrapper | |
# logger.info("Using Dinov2DPTWrapper as the encoder") | |
return Dinov2DPTWrapper | |
elif encoder_type == 'dinov2_fusion': | |
from .encoders.dinov2_fusion_wrapper import Dinov2FusionWrapper | |
# logger.info("Using Dinov2FusionWrapper as the encoder") | |
return Dinov2FusionWrapper | |
def forward_transformer(self, image_feats, camera_embeddings, query_points, query_feats=None): | |
# assert image_feats.shape[0] == camera_embeddings.shape[0], \ | |
# "Batch size mismatch for image_feats and camera_embeddings!" | |
B = image_feats.shape[0] | |
if self.latent_query_points_type == "embedding": | |
range_ = torch.arange(self.num_pcl, device=image_feats.device) | |
x = self.pcl_embeddings(range_).unsqueeze(0).repeat((B, 1, 1)) # [B, L, D] | |
elif self.latent_query_points_type.startswith("flame"): | |
x = self.pcl_embed(self.pcl_embeddings.unsqueeze(0)).repeat((B, 1, 1)) # [B, L, D] | |
elif self.latent_query_points_type.startswith("e2e_flame"): | |
x = self.pcl_embed(query_points) # [B, L, D] | |
x = x.to(image_feats.dtype) | |
if query_feats is not None: | |
x = x + query_feats.to(image_feats.dtype) | |
x = self.transformer( | |
x, | |
cond=image_feats, | |
mod=camera_embeddings, | |
) # [B, L, D] | |
# x = x.to(image_feats.dtype) | |
return x | |
def forward_encode_image(self, image): | |
# encode image | |
if self.training and self.encoder_gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
image_feats = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.encoder), | |
image, | |
**ckpt_kwargs, | |
) | |
else: | |
image_feats = self.encoder(image) | |
return image_feats | |
def forward_latent_points(self, image, camera, query_points=None, additional_features=None): | |
# image: [B, C_img, H_img, W_img] | |
# camera: [B, D_cam_raw] | |
B = image.shape[0] | |
# encode image | |
image_feats = self.forward_encode_image(image) | |
assert image_feats.shape[-1] == self.encoder_feat_dim, \ | |
f"Feature dimension mismatch: {image_feats.shape[-1]} vs {self.encoder_feat_dim}" | |
if additional_features is not None and len(additional_features.keys()) > 0: | |
image_feats_bchw = rearrange(image_feats, "b (h w) c -> b c h w", h=int(math.sqrt(image_feats.shape[1]))) | |
additional_features["source_image_feats"] = image_feats_bchw | |
proj_feats = self.renderer.get_batch_project_feats(None, query_points, additional_features=additional_features, feat_nms=['source_image_feats'], use_mesh=True) | |
query_feats = proj_feats['source_image_feats'] | |
else: | |
query_feats = None | |
# # embed camera | |
# camera_embeddings = self.camera_embedder(camera) | |
# assert camera_embeddings.shape[-1] == self.camera_embed_dim, \ | |
# f"Feature dimension mismatch: {camera_embeddings.shape[-1]} vs {self.camera_embed_dim}" | |
# transformer generating latent points | |
tokens = self.forward_transformer(image_feats, camera_embeddings=None, query_points=query_points, query_feats=query_feats) | |
return tokens, image_feats | |
def forward(self, image, source_c2ws, source_intrs, render_c2ws, render_intrs, render_bg_colors, flame_params, source_flame_params=None, render_images=None, data=None): | |
# image: [B, N_ref, C_img, H_img, W_img] | |
# source_c2ws: [B, N_ref, 4, 4] | |
# source_intrs: [B, N_ref, 4, 4] | |
# render_c2ws: [B, N_source, 4, 4] | |
# render_intrs: [B, N_source, 4, 4] | |
# render_bg_colors: [B, N_source, 3] | |
# flame_params: Dict, e.g., pose_shape: [B, N_source, 21, 3], betas:[B, 100] | |
assert image.shape[0] == render_c2ws.shape[0], "Batch size mismatch for image and render_c2ws" | |
assert image.shape[0] == render_bg_colors.shape[0], "Batch size mismatch for image and render_bg_colors" | |
assert image.shape[0] == flame_params["betas"].shape[0], "Batch size mismatch for image and flame_params" | |
assert image.shape[0] == flame_params["expr"].shape[0], "Batch size mismatch for image and flame_params" | |
assert len(flame_params["betas"].shape) == 2 | |
render_h, render_w = int(render_intrs[0, 0, 1, 2] * 2), int(render_intrs[0, 0, 0, 2] * 2) | |
query_points = None | |
if self.latent_query_points_type.startswith("e2e_flame"): | |
query_points, flame_params = self.renderer.get_query_points(flame_params, | |
device=image.device) | |
additional_features = {} | |
latent_points, image_feats = self.forward_latent_points(image[:, 0], camera=None, query_points=query_points, additional_features=additional_features) # [B, N, C] | |
additional_features.update({ | |
"image_feats": image_feats, "image": image[:, 0], | |
}) | |
image_feats_bchw = rearrange(image_feats, "b (h w) c -> b c h w", h=int(math.sqrt(image_feats.shape[1]))) | |
additional_features["image_feats_bchw"] = image_feats_bchw | |
# render target views | |
render_results = self.renderer(gs_hidden_features=latent_points, | |
query_points=query_points, | |
flame_data=flame_params, | |
c2w=render_c2ws, | |
intrinsic=render_intrs, | |
height=render_h, | |
width=render_w, | |
background_color=render_bg_colors, | |
additional_features=additional_features | |
) | |
N, M = render_c2ws.shape[:2] | |
assert render_results['comp_rgb'].shape[0] in [N, N], "Batch size mismatch for render_results" | |
assert render_results['comp_rgb'].shape[1] in [M, M*2], "Number of rendered views should be consistent with render_cameras" | |
if self.use_conf_map: | |
b, v = render_images.shape[:2] | |
if self.conf_use_pred_img: | |
render_images = repeat(render_images, "b v c h w -> (b v r) c h w", r=2) | |
pred_images = rearrange(render_results['comp_rgb'].detach().clone(), "b v c h w -> (b v) c h w") | |
else: | |
render_images = rearrange(render_images, "b v c h w -> (b v) c h w") | |
pred_images = None | |
conf_sigma_l1, conf_sigma_percl = self.conf_net(render_images, pred_images) # Bx2xHxW | |
conf_sigma_l1 = rearrange(conf_sigma_l1, "(b v) c h w -> b v c h w", b=b, v=v) | |
conf_sigma_percl = rearrange(conf_sigma_percl, "(b v) c h w -> b v c h w", b=b, v=v) | |
conf_dict = { | |
"conf_sigma_l1": conf_sigma_l1, | |
"conf_sigma_percl": conf_sigma_percl, | |
} | |
else: | |
conf_dict = {} | |
# self.conf_sigma_l1 = conf_sigma_l1[:,:1] | |
# self.conf_sigma_l1_flip = conf_sigma_l1[:,1:] | |
# self.conf_sigma_percl = conf_sigma_percl[:,:1] | |
# self.conf_sigma_percl_flip = conf_sigma_percl[:,1:] | |
return { | |
'latent_points': latent_points, | |
**render_results, | |
**conf_dict, | |
} | |
def infer_single_view(self, image, source_c2ws, source_intrs, render_c2ws, | |
render_intrs, render_bg_colors, flame_params): | |
# image: [B, N_ref, C_img, H_img, W_img] | |
# source_c2ws: [B, N_ref, 4, 4] | |
# source_intrs: [B, N_ref, 4, 4] | |
# render_c2ws: [B, N_source, 4, 4] | |
# render_intrs: [B, N_source, 4, 4] | |
# render_bg_colors: [B, N_source, 3] | |
# flame_params: Dict, e.g., pose_shape: [B, N_source, 21, 3], betas:[B, 100] | |
assert image.shape[0] == render_c2ws.shape[0], "Batch size mismatch for image and render_c2ws" | |
assert image.shape[0] == render_bg_colors.shape[0], "Batch size mismatch for image and render_bg_colors" | |
assert image.shape[0] == flame_params["betas"].shape[0], "Batch size mismatch for image and flame_params" | |
assert image.shape[0] == flame_params["expr"].shape[0], "Batch size mismatch for image and flame_params" | |
assert len(flame_params["betas"].shape) == 2 | |
render_h, render_w = int(render_intrs[0, 0, 1, 2] * 2), int(render_intrs[0, 0, 0, 2] * 2) | |
assert image.shape[0] == 1 | |
num_views = render_c2ws.shape[1] | |
query_points = None | |
if self.latent_query_points_type.startswith("e2e_flame"): | |
query_points, flame_params = self.renderer.get_query_points(flame_params, | |
device=image.device) | |
latent_points, image_feats = self.forward_latent_points(image[:, 0], camera=None, query_points=query_points) # [B, N, C] | |
image_feats_bchw = rearrange(image_feats, "b (h w) c -> b c h w", h=int(math.sqrt(image_feats.shape[1]))) | |
gs_model_list, query_points, flame_params, _ = self.renderer.forward_gs(gs_hidden_features=latent_points, | |
query_points=query_points, | |
flame_data=flame_params, | |
additional_features={"image_feats": image_feats, "image": image[:, 0], "image_feats_bchw": image_feats_bchw}) | |
render_res_list = [] | |
for view_idx in range(num_views): | |
render_res = self.renderer.forward_animate_gs(gs_model_list, | |
query_points, | |
self.renderer.get_single_view_smpl_data(flame_params, view_idx), | |
render_c2ws[:, view_idx:view_idx+1], | |
render_intrs[:, view_idx:view_idx+1], | |
render_h, | |
render_w, | |
render_bg_colors[:, view_idx:view_idx+1]) | |
render_res_list.append(render_res) | |
out = defaultdict(list) | |
for res in render_res_list: | |
for k, v in res.items(): | |
out[k].append(v) | |
for k, v in out.items(): | |
# print(f"out key:{k}") | |
if isinstance(v[0], torch.Tensor): | |
out[k] = torch.concat(v, dim=1) | |
if k in ["comp_rgb", "comp_mask", "comp_depth"]: | |
out[k] = out[k][0].permute(0, 2, 3, 1) # [1, Nv, 3, H, W] -> [Nv, 3, H, W] - > [Nv, H, W, 3] | |
else: | |
out[k] = v | |
out['cano_gs_lst'] = gs_model_list | |
return out | |