Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,686 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import math
from collections import defaultdict
import numpy as np
import torch
import torch.nn as nn
from accelerate.logging import get_logger
from einops import rearrange, repeat
from .transformer import TransformerDecoder
from lam.models.rendering.gs_renderer import GS3DRenderer, PointEmbed
from diffusers.utils import is_torch_version
logger = get_logger(__name__)
class ModelLAM(nn.Module):
"""
Full model of the basic single-view large reconstruction model.
"""
def __init__(self,
transformer_dim: int, transformer_layers: int, transformer_heads: int,
transformer_type="cond",
tf_grad_ckpt=False,
encoder_grad_ckpt=False,
encoder_freeze: bool = True, encoder_type: str = 'dino',
encoder_model_name: str = 'facebook/dino-vitb16', encoder_feat_dim: int = 768,
num_pcl: int=2048, pcl_dim: int=512,
human_model_path=None,
flame_subdivide_num=2,
flame_type="flame",
gs_query_dim=None,
gs_use_rgb=False,
gs_sh=3,
gs_mlp_network_config=None,
gs_xyz_offset_max_step=1.8 / 32,
gs_clip_scaling=0.2,
shape_param_dim=100,
expr_param_dim=50,
fix_opacity=False,
fix_rotation=False,
flame_scale=1.0,
**kwargs,
):
super().__init__()
self.gradient_checkpointing = tf_grad_ckpt
self.encoder_gradient_checkpointing = encoder_grad_ckpt
# attributes
self.encoder_feat_dim = encoder_feat_dim
self.conf_use_pred_img = False
self.conf_cat_feat = False and self.conf_use_pred_img # True # False
# modules
# image encoder
self.encoder = self._encoder_fn(encoder_type)(
model_name=encoder_model_name,
freeze=encoder_freeze,
encoder_feat_dim=encoder_feat_dim,
)
# learnable points embedding
skip_decoder = False
self.latent_query_points_type = kwargs.get("latent_query_points_type", "e2e_flame")
if self.latent_query_points_type == "embedding":
self.num_pcl = num_pcl
self.pcl_embeddings = nn.Embedding(num_pcl , pcl_dim)
elif self.latent_query_points_type.startswith("flame"):
latent_query_points_file = os.path.join(human_model_path, "flame_points", f"{self.latent_query_points_type}.npy")
pcl_embeddings = torch.from_numpy(np.load(latent_query_points_file)).float()
print(f"==========load flame points:{latent_query_points_file}, shape:{pcl_embeddings.shape}")
self.register_buffer("pcl_embeddings", pcl_embeddings)
self.pcl_embed = PointEmbed(dim=pcl_dim)
elif self.latent_query_points_type.startswith("e2e_flame"):
skip_decoder = True
self.pcl_embed = PointEmbed(dim=pcl_dim)
else:
raise NotImplementedError
print("==="*16*3, f"\nskip_decoder: {skip_decoder}", "\n"+"==="*16*3)
# transformer
self.transformer = TransformerDecoder(
block_type=transformer_type,
num_layers=transformer_layers, num_heads=transformer_heads,
inner_dim=transformer_dim, cond_dim=encoder_feat_dim, mod_dim=None,
gradient_checkpointing=self.gradient_checkpointing,
)
# renderer
self.renderer = GS3DRenderer(human_model_path=human_model_path,
subdivide_num=flame_subdivide_num,
smpl_type=flame_type,
feat_dim=transformer_dim,
query_dim=gs_query_dim,
use_rgb=gs_use_rgb,
sh_degree=gs_sh,
mlp_network_config=gs_mlp_network_config,
xyz_offset_max_step=gs_xyz_offset_max_step,
clip_scaling=gs_clip_scaling,
scale_sphere=kwargs.get("scale_sphere", False),
shape_param_dim=shape_param_dim,
expr_param_dim=expr_param_dim,
fix_opacity=fix_opacity,
fix_rotation=fix_rotation,
skip_decoder=skip_decoder,
decode_with_extra_info=kwargs.get("decode_with_extra_info", None),
gradient_checkpointing=self.gradient_checkpointing,
add_teeth=kwargs.get("add_teeth", True),
teeth_bs_flag=kwargs.get("teeth_bs_flag", False),
oral_mesh_flag=kwargs.get("oral_mesh_flag", False),
use_mesh_shading=kwargs.get('use_mesh_shading', False),
render_rgb=kwargs.get("render_rgb", True),
)
def get_last_layer(self):
return self.renderer.gs_net.out_layers["shs"].weight
@staticmethod
def _encoder_fn(encoder_type: str):
encoder_type = encoder_type.lower()
assert encoder_type in ['dino', 'dinov2', 'dinov2_unet', 'resunet', 'dinov2_featup', 'dinov2_dpt', 'dinov2_fusion'], "Unsupported encoder type"
if encoder_type == 'dino':
from .encoders.dino_wrapper import DinoWrapper
# logger.info("Using DINO as the encoder")
return DinoWrapper
elif encoder_type == 'dinov2':
from .encoders.dinov2_wrapper import Dinov2Wrapper
# logger.info("Using DINOv2 as the encoder")
return Dinov2Wrapper
elif encoder_type == 'dinov2_unet':
from .encoders.dinov2_unet_wrapper import Dinov2UnetWrapper
# logger.info("Using Dinov2Unet as the encoder")
return Dinov2UnetWrapper
elif encoder_type == 'resunet':
from .encoders.xunet_wrapper import XnetWrapper
# logger.info("Using XnetWrapper as the encoder")
return XnetWrapper
elif encoder_type == 'dinov2_featup':
from .encoders.dinov2_featup_wrapper import Dinov2FeatUpWrapper
# logger.info("Using Dinov2FeatUpWrapper as the encoder")
return Dinov2FeatUpWrapper
elif encoder_type == 'dinov2_dpt':
from .encoders.dinov2_dpt_wrapper import Dinov2DPTWrapper
# logger.info("Using Dinov2DPTWrapper as the encoder")
return Dinov2DPTWrapper
elif encoder_type == 'dinov2_fusion':
from .encoders.dinov2_fusion_wrapper import Dinov2FusionWrapper
# logger.info("Using Dinov2FusionWrapper as the encoder")
return Dinov2FusionWrapper
def forward_transformer(self, image_feats, camera_embeddings, query_points, query_feats=None):
# assert image_feats.shape[0] == camera_embeddings.shape[0], \
# "Batch size mismatch for image_feats and camera_embeddings!"
B = image_feats.shape[0]
if self.latent_query_points_type == "embedding":
range_ = torch.arange(self.num_pcl, device=image_feats.device)
x = self.pcl_embeddings(range_).unsqueeze(0).repeat((B, 1, 1)) # [B, L, D]
elif self.latent_query_points_type.startswith("flame"):
x = self.pcl_embed(self.pcl_embeddings.unsqueeze(0)).repeat((B, 1, 1)) # [B, L, D]
elif self.latent_query_points_type.startswith("e2e_flame"):
x = self.pcl_embed(query_points) # [B, L, D]
x = x.to(image_feats.dtype)
if query_feats is not None:
x = x + query_feats.to(image_feats.dtype)
x = self.transformer(
x,
cond=image_feats,
mod=camera_embeddings,
) # [B, L, D]
# x = x.to(image_feats.dtype)
return x
def forward_encode_image(self, image):
# encode image
if self.training and self.encoder_gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
image_feats = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.encoder),
image,
**ckpt_kwargs,
)
else:
image_feats = self.encoder(image)
return image_feats
@torch.compile
def forward_latent_points(self, image, camera, query_points=None, additional_features=None):
# image: [B, C_img, H_img, W_img]
# camera: [B, D_cam_raw]
B = image.shape[0]
# encode image
image_feats = self.forward_encode_image(image)
assert image_feats.shape[-1] == self.encoder_feat_dim, \
f"Feature dimension mismatch: {image_feats.shape[-1]} vs {self.encoder_feat_dim}"
if additional_features is not None and len(additional_features.keys()) > 0:
image_feats_bchw = rearrange(image_feats, "b (h w) c -> b c h w", h=int(math.sqrt(image_feats.shape[1])))
additional_features["source_image_feats"] = image_feats_bchw
proj_feats = self.renderer.get_batch_project_feats(None, query_points, additional_features=additional_features, feat_nms=['source_image_feats'], use_mesh=True)
query_feats = proj_feats['source_image_feats']
else:
query_feats = None
# # embed camera
# camera_embeddings = self.camera_embedder(camera)
# assert camera_embeddings.shape[-1] == self.camera_embed_dim, \
# f"Feature dimension mismatch: {camera_embeddings.shape[-1]} vs {self.camera_embed_dim}"
# transformer generating latent points
tokens = self.forward_transformer(image_feats, camera_embeddings=None, query_points=query_points, query_feats=query_feats)
return tokens, image_feats
def forward(self, image, source_c2ws, source_intrs, render_c2ws, render_intrs, render_bg_colors, flame_params, source_flame_params=None, render_images=None, data=None):
# image: [B, N_ref, C_img, H_img, W_img]
# source_c2ws: [B, N_ref, 4, 4]
# source_intrs: [B, N_ref, 4, 4]
# render_c2ws: [B, N_source, 4, 4]
# render_intrs: [B, N_source, 4, 4]
# render_bg_colors: [B, N_source, 3]
# flame_params: Dict, e.g., pose_shape: [B, N_source, 21, 3], betas:[B, 100]
assert image.shape[0] == render_c2ws.shape[0], "Batch size mismatch for image and render_c2ws"
assert image.shape[0] == render_bg_colors.shape[0], "Batch size mismatch for image and render_bg_colors"
assert image.shape[0] == flame_params["betas"].shape[0], "Batch size mismatch for image and flame_params"
assert image.shape[0] == flame_params["expr"].shape[0], "Batch size mismatch for image and flame_params"
assert len(flame_params["betas"].shape) == 2
render_h, render_w = int(render_intrs[0, 0, 1, 2] * 2), int(render_intrs[0, 0, 0, 2] * 2)
query_points = None
if self.latent_query_points_type.startswith("e2e_flame"):
query_points, flame_params = self.renderer.get_query_points(flame_params,
device=image.device)
additional_features = {}
latent_points, image_feats = self.forward_latent_points(image[:, 0], camera=None, query_points=query_points, additional_features=additional_features) # [B, N, C]
additional_features.update({
"image_feats": image_feats, "image": image[:, 0],
})
image_feats_bchw = rearrange(image_feats, "b (h w) c -> b c h w", h=int(math.sqrt(image_feats.shape[1])))
additional_features["image_feats_bchw"] = image_feats_bchw
# render target views
render_results = self.renderer(gs_hidden_features=latent_points,
query_points=query_points,
flame_data=flame_params,
c2w=render_c2ws,
intrinsic=render_intrs,
height=render_h,
width=render_w,
background_color=render_bg_colors,
additional_features=additional_features
)
N, M = render_c2ws.shape[:2]
assert render_results['comp_rgb'].shape[0] in [N, N], "Batch size mismatch for render_results"
assert render_results['comp_rgb'].shape[1] in [M, M*2], "Number of rendered views should be consistent with render_cameras"
if self.use_conf_map:
b, v = render_images.shape[:2]
if self.conf_use_pred_img:
render_images = repeat(render_images, "b v c h w -> (b v r) c h w", r=2)
pred_images = rearrange(render_results['comp_rgb'].detach().clone(), "b v c h w -> (b v) c h w")
else:
render_images = rearrange(render_images, "b v c h w -> (b v) c h w")
pred_images = None
conf_sigma_l1, conf_sigma_percl = self.conf_net(render_images, pred_images) # Bx2xHxW
conf_sigma_l1 = rearrange(conf_sigma_l1, "(b v) c h w -> b v c h w", b=b, v=v)
conf_sigma_percl = rearrange(conf_sigma_percl, "(b v) c h w -> b v c h w", b=b, v=v)
conf_dict = {
"conf_sigma_l1": conf_sigma_l1,
"conf_sigma_percl": conf_sigma_percl,
}
else:
conf_dict = {}
# self.conf_sigma_l1 = conf_sigma_l1[:,:1]
# self.conf_sigma_l1_flip = conf_sigma_l1[:,1:]
# self.conf_sigma_percl = conf_sigma_percl[:,:1]
# self.conf_sigma_percl_flip = conf_sigma_percl[:,1:]
return {
'latent_points': latent_points,
**render_results,
**conf_dict,
}
@torch.no_grad()
def infer_single_view(self, image, source_c2ws, source_intrs, render_c2ws,
render_intrs, render_bg_colors, flame_params):
# image: [B, N_ref, C_img, H_img, W_img]
# source_c2ws: [B, N_ref, 4, 4]
# source_intrs: [B, N_ref, 4, 4]
# render_c2ws: [B, N_source, 4, 4]
# render_intrs: [B, N_source, 4, 4]
# render_bg_colors: [B, N_source, 3]
# flame_params: Dict, e.g., pose_shape: [B, N_source, 21, 3], betas:[B, 100]
assert image.shape[0] == render_c2ws.shape[0], "Batch size mismatch for image and render_c2ws"
assert image.shape[0] == render_bg_colors.shape[0], "Batch size mismatch for image and render_bg_colors"
assert image.shape[0] == flame_params["betas"].shape[0], "Batch size mismatch for image and flame_params"
assert image.shape[0] == flame_params["expr"].shape[0], "Batch size mismatch for image and flame_params"
assert len(flame_params["betas"].shape) == 2
render_h, render_w = int(render_intrs[0, 0, 1, 2] * 2), int(render_intrs[0, 0, 0, 2] * 2)
assert image.shape[0] == 1
num_views = render_c2ws.shape[1]
query_points = None
if self.latent_query_points_type.startswith("e2e_flame"):
query_points, flame_params = self.renderer.get_query_points(flame_params,
device=image.device)
latent_points, image_feats = self.forward_latent_points(image[:, 0], camera=None, query_points=query_points) # [B, N, C]
image_feats_bchw = rearrange(image_feats, "b (h w) c -> b c h w", h=int(math.sqrt(image_feats.shape[1])))
gs_model_list, query_points, flame_params, _ = self.renderer.forward_gs(gs_hidden_features=latent_points,
query_points=query_points,
flame_data=flame_params,
additional_features={"image_feats": image_feats, "image": image[:, 0], "image_feats_bchw": image_feats_bchw})
render_res_list = []
for view_idx in range(num_views):
render_res = self.renderer.forward_animate_gs(gs_model_list,
query_points,
self.renderer.get_single_view_smpl_data(flame_params, view_idx),
render_c2ws[:, view_idx:view_idx+1],
render_intrs[:, view_idx:view_idx+1],
render_h,
render_w,
render_bg_colors[:, view_idx:view_idx+1])
render_res_list.append(render_res)
out = defaultdict(list)
for res in render_res_list:
for k, v in res.items():
out[k].append(v)
for k, v in out.items():
# print(f"out key:{k}")
if isinstance(v[0], torch.Tensor):
out[k] = torch.concat(v, dim=1)
if k in ["comp_rgb", "comp_mask", "comp_depth"]:
out[k] = out[k][0].permute(0, 2, 3, 1) # [1, Nv, 3, H, W] -> [Nv, 3, H, W] - > [Nv, H, W, 3]
else:
out[k] = v
out['cano_gs_lst'] = gs_model_list
return out
|