File size: 18,686 Bytes
17cd746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import math
from collections import defaultdict
import numpy as np
import torch
import torch.nn as nn
from accelerate.logging import get_logger
from einops import rearrange, repeat

from .transformer import TransformerDecoder
from lam.models.rendering.gs_renderer import GS3DRenderer, PointEmbed
from diffusers.utils import is_torch_version

logger = get_logger(__name__)


class ModelLAM(nn.Module):
    """
    Full model of the basic single-view large reconstruction model.
    """
    def __init__(self,
                 transformer_dim: int, transformer_layers: int, transformer_heads: int,
                 transformer_type="cond",
                 tf_grad_ckpt=False,
                 encoder_grad_ckpt=False,
                 encoder_freeze: bool = True, encoder_type: str = 'dino',
                 encoder_model_name: str = 'facebook/dino-vitb16', encoder_feat_dim: int = 768,
                 num_pcl: int=2048, pcl_dim: int=512,
                 human_model_path=None,
                 flame_subdivide_num=2,
                 flame_type="flame",
                 gs_query_dim=None,
                 gs_use_rgb=False,
                 gs_sh=3,
                 gs_mlp_network_config=None,
                 gs_xyz_offset_max_step=1.8 / 32,
                 gs_clip_scaling=0.2,
                 shape_param_dim=100,
                 expr_param_dim=50,
                 fix_opacity=False,
                 fix_rotation=False,
                 flame_scale=1.0,
                 **kwargs,
                 ):
        super().__init__()
        self.gradient_checkpointing = tf_grad_ckpt
        self.encoder_gradient_checkpointing = encoder_grad_ckpt
        
        # attributes
        self.encoder_feat_dim = encoder_feat_dim
        self.conf_use_pred_img = False
        self.conf_cat_feat = False and self.conf_use_pred_img  # True # False

        # modules
        # image encoder
        self.encoder = self._encoder_fn(encoder_type)(
            model_name=encoder_model_name,
            freeze=encoder_freeze,
            encoder_feat_dim=encoder_feat_dim,
        )

        # learnable points embedding
        skip_decoder = False
        self.latent_query_points_type = kwargs.get("latent_query_points_type", "e2e_flame")
        if self.latent_query_points_type == "embedding":
            self.num_pcl = num_pcl
            self.pcl_embeddings = nn.Embedding(num_pcl , pcl_dim)
        elif self.latent_query_points_type.startswith("flame"):
            latent_query_points_file = os.path.join(human_model_path, "flame_points", f"{self.latent_query_points_type}.npy")
            pcl_embeddings = torch.from_numpy(np.load(latent_query_points_file)).float()
            print(f"==========load flame points:{latent_query_points_file}, shape:{pcl_embeddings.shape}")
            self.register_buffer("pcl_embeddings", pcl_embeddings)
            self.pcl_embed = PointEmbed(dim=pcl_dim)
        elif self.latent_query_points_type.startswith("e2e_flame"):
            skip_decoder = True
            self.pcl_embed = PointEmbed(dim=pcl_dim)
        else:
            raise NotImplementedError
        print("==="*16*3, f"\nskip_decoder: {skip_decoder}", "\n"+"==="*16*3)
        # transformer
        self.transformer = TransformerDecoder(
            block_type=transformer_type,
            num_layers=transformer_layers, num_heads=transformer_heads,
            inner_dim=transformer_dim, cond_dim=encoder_feat_dim, mod_dim=None,
            gradient_checkpointing=self.gradient_checkpointing,
        )
        
        # renderer
        self.renderer = GS3DRenderer(human_model_path=human_model_path,
                                     subdivide_num=flame_subdivide_num,
                                     smpl_type=flame_type,
                                     feat_dim=transformer_dim,
                                     query_dim=gs_query_dim,
                                     use_rgb=gs_use_rgb,
                                     sh_degree=gs_sh,
                                     mlp_network_config=gs_mlp_network_config,
                                     xyz_offset_max_step=gs_xyz_offset_max_step,
                                     clip_scaling=gs_clip_scaling,
                                     scale_sphere=kwargs.get("scale_sphere", False),
                                     shape_param_dim=shape_param_dim,
                                     expr_param_dim=expr_param_dim,
                                     fix_opacity=fix_opacity,
                                     fix_rotation=fix_rotation,
                                     skip_decoder=skip_decoder,
                                     decode_with_extra_info=kwargs.get("decode_with_extra_info", None),
                                     gradient_checkpointing=self.gradient_checkpointing,
                                     add_teeth=kwargs.get("add_teeth", True),
                                     teeth_bs_flag=kwargs.get("teeth_bs_flag", False),
                                     oral_mesh_flag=kwargs.get("oral_mesh_flag", False),
                                     use_mesh_shading=kwargs.get('use_mesh_shading', False),
                                     render_rgb=kwargs.get("render_rgb", True),
                                     )

    def get_last_layer(self):
        return self.renderer.gs_net.out_layers["shs"].weight
    
    @staticmethod
    def _encoder_fn(encoder_type: str):
        encoder_type = encoder_type.lower()
        assert encoder_type in ['dino', 'dinov2', 'dinov2_unet', 'resunet', 'dinov2_featup', 'dinov2_dpt', 'dinov2_fusion'], "Unsupported encoder type"
        if encoder_type == 'dino':
            from .encoders.dino_wrapper import DinoWrapper
            # logger.info("Using DINO as the encoder")
            return DinoWrapper
        elif encoder_type == 'dinov2':
            from .encoders.dinov2_wrapper import Dinov2Wrapper
            # logger.info("Using DINOv2 as the encoder")
            return Dinov2Wrapper
        elif encoder_type == 'dinov2_unet':
            from .encoders.dinov2_unet_wrapper import Dinov2UnetWrapper
            # logger.info("Using Dinov2Unet as the encoder")
            return Dinov2UnetWrapper
        elif encoder_type == 'resunet':
            from .encoders.xunet_wrapper import XnetWrapper
            # logger.info("Using XnetWrapper as the encoder")
            return XnetWrapper
        elif encoder_type == 'dinov2_featup':
            from .encoders.dinov2_featup_wrapper import Dinov2FeatUpWrapper
            # logger.info("Using Dinov2FeatUpWrapper as the encoder")
            return Dinov2FeatUpWrapper
        elif encoder_type == 'dinov2_dpt':
            from .encoders.dinov2_dpt_wrapper import Dinov2DPTWrapper
            # logger.info("Using Dinov2DPTWrapper as the encoder")
            return Dinov2DPTWrapper
        elif encoder_type == 'dinov2_fusion':
            from .encoders.dinov2_fusion_wrapper import Dinov2FusionWrapper
            # logger.info("Using Dinov2FusionWrapper as the encoder")
            return Dinov2FusionWrapper
        
    def forward_transformer(self, image_feats, camera_embeddings, query_points, query_feats=None):
        # assert image_feats.shape[0] == camera_embeddings.shape[0], \
        #     "Batch size mismatch for image_feats and camera_embeddings!"
        B = image_feats.shape[0]
        if self.latent_query_points_type == "embedding":
            range_ = torch.arange(self.num_pcl, device=image_feats.device)
            x =  self.pcl_embeddings(range_).unsqueeze(0).repeat((B, 1, 1)) # [B, L, D]
            
        elif self.latent_query_points_type.startswith("flame"):
            x = self.pcl_embed(self.pcl_embeddings.unsqueeze(0)).repeat((B, 1, 1)) # [B, L, D]

        elif self.latent_query_points_type.startswith("e2e_flame"):
            x = self.pcl_embed(query_points) # [B, L, D]

        x = x.to(image_feats.dtype)
        if query_feats is not None:
            x = x + query_feats.to(image_feats.dtype)
        x = self.transformer(
            x,
            cond=image_feats,
            mod=camera_embeddings,
        )  # [B, L, D]
        # x = x.to(image_feats.dtype)
        return x

    def forward_encode_image(self, image):
        # encode image
        if self.training and self.encoder_gradient_checkpointing:
            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)
                return custom_forward
            ckpt_kwargs = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
            image_feats = torch.utils.checkpoint.checkpoint(
                create_custom_forward(self.encoder),
                image,
                **ckpt_kwargs,
            )
        else:
            image_feats = self.encoder(image)
        return image_feats

    @torch.compile
    def forward_latent_points(self, image, camera, query_points=None, additional_features=None):
        # image: [B, C_img, H_img, W_img]
        # camera: [B, D_cam_raw]
        B = image.shape[0]

        # encode image
        image_feats = self.forward_encode_image(image)
        
        assert image_feats.shape[-1] == self.encoder_feat_dim, \
            f"Feature dimension mismatch: {image_feats.shape[-1]} vs {self.encoder_feat_dim}"

        if additional_features is not None and len(additional_features.keys()) > 0:
            image_feats_bchw = rearrange(image_feats, "b (h w) c -> b c h w", h=int(math.sqrt(image_feats.shape[1])))
            additional_features["source_image_feats"] = image_feats_bchw
            proj_feats = self.renderer.get_batch_project_feats(None, query_points, additional_features=additional_features, feat_nms=['source_image_feats'], use_mesh=True)
            query_feats = proj_feats['source_image_feats']
        else:
            query_feats = None
        # # embed camera
        # camera_embeddings = self.camera_embedder(camera)
        # assert camera_embeddings.shape[-1] == self.camera_embed_dim, \
        #     f"Feature dimension mismatch: {camera_embeddings.shape[-1]} vs {self.camera_embed_dim}"

        # transformer generating latent points
        tokens = self.forward_transformer(image_feats, camera_embeddings=None, query_points=query_points, query_feats=query_feats)

        return tokens, image_feats

    def forward(self, image, source_c2ws, source_intrs, render_c2ws, render_intrs, render_bg_colors, flame_params, source_flame_params=None, render_images=None, data=None):
        # image: [B, N_ref, C_img, H_img, W_img]
        # source_c2ws: [B, N_ref, 4, 4]
        # source_intrs: [B, N_ref, 4, 4]
        # render_c2ws: [B, N_source, 4, 4]
        # render_intrs: [B, N_source, 4, 4]
        # render_bg_colors: [B, N_source, 3]
        # flame_params: Dict, e.g., pose_shape: [B, N_source, 21, 3], betas:[B, 100]
        assert image.shape[0] == render_c2ws.shape[0], "Batch size mismatch for image and render_c2ws"
        assert image.shape[0] == render_bg_colors.shape[0], "Batch size mismatch for image and render_bg_colors"
        assert image.shape[0] == flame_params["betas"].shape[0], "Batch size mismatch for image and flame_params"
        assert image.shape[0] == flame_params["expr"].shape[0], "Batch size mismatch for image and flame_params"
        assert len(flame_params["betas"].shape) == 2
        render_h, render_w = int(render_intrs[0, 0, 1, 2] * 2), int(render_intrs[0, 0, 0, 2] * 2)
        query_points = None

        if self.latent_query_points_type.startswith("e2e_flame"):
            query_points, flame_params = self.renderer.get_query_points(flame_params,
                                                                        device=image.device)

        additional_features = {}
                                                          
        latent_points, image_feats = self.forward_latent_points(image[:, 0], camera=None, query_points=query_points, additional_features=additional_features)  # [B, N, C]

        additional_features.update({
            "image_feats": image_feats, "image": image[:, 0], 
        })
        image_feats_bchw = rearrange(image_feats, "b (h w) c -> b c h w", h=int(math.sqrt(image_feats.shape[1])))
        additional_features["image_feats_bchw"] = image_feats_bchw

        # render target views
        render_results = self.renderer(gs_hidden_features=latent_points,
                                       query_points=query_points,
                                       flame_data=flame_params,
                                       c2w=render_c2ws,
                                       intrinsic=render_intrs,
                                       height=render_h,
                                       width=render_w,
                                       background_color=render_bg_colors,
                                       additional_features=additional_features
        )

        N, M = render_c2ws.shape[:2]
        assert render_results['comp_rgb'].shape[0] in [N, N], "Batch size mismatch for render_results"
        assert render_results['comp_rgb'].shape[1] in [M, M*2], "Number of rendered views should be consistent with render_cameras"

        if self.use_conf_map:
            b, v = render_images.shape[:2]
            if self.conf_use_pred_img:
                render_images = repeat(render_images, "b v c h w -> (b v r) c h w", r=2)
                pred_images = rearrange(render_results['comp_rgb'].detach().clone(), "b v c h w -> (b v) c h w")
            else:
                render_images = rearrange(render_images, "b v c h w -> (b v) c h w")
                pred_images = None
            conf_sigma_l1, conf_sigma_percl = self.conf_net(render_images, pred_images)  # Bx2xHxW
            conf_sigma_l1 = rearrange(conf_sigma_l1, "(b v) c h w -> b v c h w", b=b, v=v)
            conf_sigma_percl = rearrange(conf_sigma_percl, "(b v) c h w -> b v c h w", b=b, v=v)
            conf_dict = {
                "conf_sigma_l1": conf_sigma_l1,
                "conf_sigma_percl": conf_sigma_percl,
            }
        else:
            conf_dict = {}
            # self.conf_sigma_l1 = conf_sigma_l1[:,:1]
            # self.conf_sigma_l1_flip = conf_sigma_l1[:,1:]
            # self.conf_sigma_percl = conf_sigma_percl[:,:1]
            # self.conf_sigma_percl_flip = conf_sigma_percl[:,1:]

        return {
            'latent_points': latent_points,
            **render_results,
            **conf_dict,
        }
        
    @torch.no_grad()
    def infer_single_view(self, image, source_c2ws, source_intrs, render_c2ws, 
                          render_intrs, render_bg_colors, flame_params):
        # image: [B, N_ref, C_img, H_img, W_img]
        # source_c2ws: [B, N_ref, 4, 4]
        # source_intrs: [B, N_ref, 4, 4]
        # render_c2ws: [B, N_source, 4, 4]
        # render_intrs: [B, N_source, 4, 4]
        # render_bg_colors: [B, N_source, 3]
        # flame_params: Dict, e.g., pose_shape: [B, N_source, 21, 3], betas:[B, 100]
        assert image.shape[0] == render_c2ws.shape[0], "Batch size mismatch for image and render_c2ws"
        assert image.shape[0] == render_bg_colors.shape[0], "Batch size mismatch for image and render_bg_colors"
        assert image.shape[0] == flame_params["betas"].shape[0], "Batch size mismatch for image and flame_params"
        assert image.shape[0] == flame_params["expr"].shape[0], "Batch size mismatch for image and flame_params"
        assert len(flame_params["betas"].shape) == 2
        render_h, render_w = int(render_intrs[0, 0, 1, 2] * 2), int(render_intrs[0, 0, 0, 2] * 2)
        assert image.shape[0] == 1
        num_views = render_c2ws.shape[1]
        query_points = None
        
        if self.latent_query_points_type.startswith("e2e_flame"):
            query_points, flame_params = self.renderer.get_query_points(flame_params,
                                                                        device=image.device)
        latent_points, image_feats = self.forward_latent_points(image[:, 0], camera=None, query_points=query_points)  # [B, N, C]
        image_feats_bchw = rearrange(image_feats, "b (h w) c -> b c h w", h=int(math.sqrt(image_feats.shape[1])))

        gs_model_list, query_points, flame_params, _ = self.renderer.forward_gs(gs_hidden_features=latent_points,
                                                query_points=query_points,
                                                flame_data=flame_params,
                                                additional_features={"image_feats": image_feats, "image": image[:, 0], "image_feats_bchw": image_feats_bchw})

        render_res_list = []
        for view_idx in range(num_views):
            render_res = self.renderer.forward_animate_gs(gs_model_list, 
                                                          query_points,
                                                          self.renderer.get_single_view_smpl_data(flame_params, view_idx), 
                                                          render_c2ws[:, view_idx:view_idx+1], 
                                                          render_intrs[:, view_idx:view_idx+1], 
                                                          render_h, 
                                                          render_w, 
                                                          render_bg_colors[:, view_idx:view_idx+1])
            render_res_list.append(render_res)

        out = defaultdict(list)
        for res in render_res_list:
            for k, v in res.items():
                out[k].append(v)
        for k, v in out.items():
            # print(f"out key:{k}")
            if isinstance(v[0], torch.Tensor):
                out[k] = torch.concat(v, dim=1)
                if k in ["comp_rgb", "comp_mask", "comp_depth"]:
                    out[k] = out[k][0].permute(0, 2, 3, 1)  # [1, Nv, 3, H, W] -> [Nv, 3, H, W] - > [Nv, H, W, 3] 
            else:
                out[k] = v
        out['cano_gs_lst'] = gs_model_list
        return out