LAM / vhap /data /video_dataset.py
yuandong513
feat: init
17cd746
raw
history blame
15.2 kB
import os
from pathlib import Path
from copy import deepcopy
from typing import Optional
import numpy as np
import PIL.Image as Image
import torch
import torchvision.transforms.functional as F
from torch.utils.data import Dataset, default_collate
import json
from vhap.util.log import get_logger
from vhap.config.base import DataConfig
logger = get_logger(__name__)
class VideoDataset(Dataset):
def __init__(
self,
cfg: DataConfig,
img_to_tensor: bool = False,
batchify_all_views: bool = False,
):
"""
Args:
root_folder: Path to dataset with the following directory layout
<root_folder>/
|---images/
| |---<timestep_id>.jpg
|
|---alpha_maps/
| |---<timestep_id>.png
|
|---landmark2d/
|---face-alignment/
| |---<camera_id>.npz
|
|---STAR/
|---<camera_id>.npz
"""
super().__init__()
self.cfg = cfg
self.img_to_tensor = img_to_tensor
self.batchify_all_views = batchify_all_views
sequence_paths = self.match_sequences()
if len(sequence_paths) > 1:
logger.info(f"Found multiple sequences: {sequence_paths}")
raise ValueError(f"Found multiple sequences by '{cfg.sequence}': \n" + "\n\t".join([str(x) for x in sequence_paths]))
elif len(sequence_paths) == 0:
raise ValueError(f"Cannot find sequence: {cfg.sequence}")
self.sequence_path = sequence_paths[0]
logger.info(f"Initializing dataset from {self.sequence_path}")
self.define_properties()
self.load_camera_params()
# timesteps
self.timestep_ids = set(
f.split('.')[0].split('_')[-1]
for f in os.listdir(self.sequence_path / self.properties['rgb']['folder']) if f.endswith(self.properties['rgb']['suffix'])
)
self.timestep_ids = sorted(self.timestep_ids)
self.timestep_indices = list(range(len(self.timestep_ids)))
self.filter_division(cfg.division)
self.filter_subset(cfg.subset)
logger.info(f"number of timesteps: {self.num_timesteps}, number of cameras: {self.num_cameras}")
# collect
self.items = []
for fi, timestep_index in enumerate(self.timestep_indices):
for ci, camera_id in enumerate(self.camera_ids):
self.items.append(
{
"timestep_index": fi, # new index after filtering
"timestep_index_original": timestep_index, # original index
"timestep_id": self.timestep_ids[timestep_index],
"camera_index": ci,
"camera_id": camera_id,
}
)
def match_sequences(self):
logger.info(f"Looking for sequence '{self.cfg.sequence}' at {self.cfg.root_folder}")
return list(filter(lambda x: x.is_dir(), self.cfg.root_folder.glob(f"{self.cfg.sequence}*")))
def define_properties(self):
self.properties = {
"rgb": {
"folder": f"images_{self.cfg.n_downsample_rgb}"
if self.cfg.n_downsample_rgb
else "images",
"per_timestep": True,
# "suffix": "jpg",
"suffix": "png",
},
"alpha_map": {
"folder": "alpha_maps",
"per_timestep": True,
"suffix": "jpg",
},
"landmark2d/face-alignment": {
"folder": "landmark2d/face-alignment",
"per_timestep": False,
"suffix": "npz",
},
"landmark2d/STAR": {
"folder": "landmark2d/STAR",
"per_timestep": False,
"suffix": "npz",
},
"landmark2d/lms": {
"folder": "landmark2d/landmarks",
"per_timestep": False,
"suffix": "npz",
},
}
@staticmethod
def get_number_after_prefix(string, prefix):
i = string.find(prefix)
if i != -1:
number_begin = i + len(prefix)
assert number_begin < len(string), f"No number found behind prefix '{prefix}'"
assert string[number_begin].isdigit(), f"No number found behind prefix '{prefix}'"
non_digit_indices = [i for i, c in enumerate(string[number_begin:]) if not c.isdigit()]
if len(non_digit_indices) > 0:
number_end = number_begin + min(non_digit_indices)
return int(string[number_begin:number_end])
else:
return int(string[number_begin:])
else:
return None
def filter_division(self, division):
pass
def filter_subset(self, subset):
if subset is not None:
if 'ti' in subset:
ti = self.get_number_after_prefix(subset, 'ti')
if 'tj' in subset:
tj = self.get_number_after_prefix(subset, 'tj')
self.timestep_indices = self.timestep_indices[ti:tj+1]
else:
self.timestep_indices = self.timestep_indices[ti:ti+1]
elif 'tn' in subset:
tn = self.get_number_after_prefix(subset, 'tn')
tn_all = len(self.timestep_indices)
tn = min(tn, tn_all)
self.timestep_indices = self.timestep_indices[::tn_all // tn][:tn]
elif 'ts' in subset:
ts = self.get_number_after_prefix(subset, 'ts')
self.timestep_indices = self.timestep_indices[::ts]
if 'ci' in subset:
ci = self.get_number_after_prefix(subset, 'ci')
self.camera_ids = self.camera_ids[ci:ci+1]
elif 'cn' in subset:
cn = self.get_number_after_prefix(subset, 'cn')
cn_all = len(self.camera_ids)
cn = min(cn, cn_all)
self.camera_ids = self.camera_ids[::cn_all // cn][:cn]
elif 'cs' in subset:
cs = self.get_number_after_prefix(subset, 'cs')
self.camera_ids = self.camera_ids[::cs]
def load_camera_params(self):
self.camera_ids = ['0']
# Guessed focal length, height, width. Should be optimized or replaced by real values
f, h, w = 512, 512, 512
K = torch.Tensor([
[f, 0, w],
[0, f, h],
[0, 0, 1]
])
orientation = torch.eye(3)[None, ...] # (1, 3, 3)
location = torch.Tensor([0, 0, 1])[None, ..., None] # (1, 3, 1)
c2w = torch.cat([orientation, location], dim=-1) # camera-to-world transformation
if self.cfg.target_extrinsic_type == "w2c":
R = orientation.transpose(-1, -2)
T = orientation.transpose(-1, -2) @ -location
w2c = torch.cat([R, T], dim=-1) # world-to-camera transformation
extrinsic = w2c
elif self.cfg.target_extrinsic_type == "c2w":
extrinsic = c2w
else:
raise NotImplementedError(f"Unknown extrinsic type: {self.cfg.target_extrinsic_type}")
self.camera_params = {}
for i, camera_id in enumerate(self.camera_ids):
self.camera_params[camera_id] = {"intrinsic": K, "extrinsic": extrinsic[i]}
return self.camera_params
def __len__(self):
if self.batchify_all_views:
return self.num_timesteps
else:
return len(self.items)
def __getitem__(self, i):
if self.batchify_all_views:
return self.getitem_by_timestep(i)
else:
return self.getitem_single_image(i)
def getitem_single_image(self, i):
item = deepcopy(self.items[i])
rgb_path = self.get_property_path("rgb", i)
item["rgb"] = np.array(Image.open(rgb_path))[:, :, :3]
camera_param = self.camera_params[item["camera_id"]]
item["intrinsic"] = camera_param["intrinsic"].clone()
item["extrinsic"] = camera_param["extrinsic"].clone()
if self.cfg.use_alpha_map or self.cfg.background_color is not None:
alpha_path = self.get_property_path("alpha_map", i)
item["alpha_map"] = np.array(Image.open(alpha_path))
if self.cfg.use_landmark:
timestep_index = self.items[i]["timestep_index"]
landmark_path = self.get_property_path("landmark2d/lms", i)
landmark_npz = np.load(landmark_path)
lms_eyes_path = os.path.join(os.path.dirname(landmark_path),'iris.json')
item["lmk2d"] = landmark_npz["face_landmark_2d"][timestep_index] # (num_points, 3)
if (item["lmk2d"][:, :2] == -1).sum() > 0:
item["lmk2d"][:, 2:] = 0.0
else:
item["lmk2d"][:, 2:] = 1.0
if(os.path.exists(lms_eyes_path)):
with open(lms_eyes_path,'r') as f:
lms_eye = json.load(f)
lms_eye = np.array([lms_eye[key] for key in lms_eye][timestep_index]).reshape((2,2)) / 1024.
lms_eye = np.concatenate([lms_eye,np.ones((2,1))],axis=1)[(1,0),:]
item["lmk2d"] = np.concatenate([item["lmk2d"], lms_eye], 0)
else:
item["lmk2d"] = np.concatenate([item["lmk2d"]], 0)
item = self.apply_transforms(item)
return item
def getitem_by_timestep(self, timestep_index):
begin = timestep_index * self.num_cameras
indices = range(begin, begin + self.num_cameras)
item = default_collate([self.getitem_single_image(i) for i in indices])
item["num_cameras"] = self.num_cameras
return item
def apply_transforms(self, item):
item = self.apply_scale_factor(item)
item = self.apply_background_color(item)
item = self.apply_to_tensor(item)
return item
def apply_to_tensor(self, item):
if self.img_to_tensor:
if "rgb" in item:
item["rgb"] = F.to_tensor(item["rgb"])
if "alpha_map" in item:
item["alpha_map"] = F.to_tensor(item["alpha_map"])
return item
def apply_scale_factor(self, item):
assert self.cfg.scale_factor <= 1.0
if "rgb" in item:
H, W, _ = item["rgb"].shape
h, w = int(H * self.cfg.scale_factor), int(W * self.cfg.scale_factor)
rgb = Image.fromarray(item["rgb"]).resize(
(w, h), resample=Image.BILINEAR
)
item["rgb"] = np.array(rgb)
# properties that are defined based on image size
if "lmk2d" in item:
item["lmk2d"][..., 0] *= w
item["lmk2d"][..., 1] *= h
if "lmk2d_iris" in item:
item["lmk2d_iris"][..., 0] *= w
item["lmk2d_iris"][..., 1] *= h
if "bbox_2d" in item:
item["bbox_2d"][[0, 2]] *= w
item["bbox_2d"][[1, 3]] *= h
# properties need to be scaled down when rgb is downsampled
n_downsample_rgb = self.cfg.n_downsample_rgb if self.cfg.n_downsample_rgb else 1
scale_factor = self.cfg.scale_factor / n_downsample_rgb
item["scale_factor"] = scale_factor # NOTE: not self.cfg.scale_factor
if scale_factor < 1.0:
if "intrinsic" in item:
item["intrinsic"][:2] *= scale_factor
if "alpha_map" in item:
h, w = item["rgb"].shape[:2]
alpha_map = Image.fromarray(item["alpha_map"]).resize(
(w, h), Image.Resampling.BILINEAR
)
item["alpha_map"] = np.array(alpha_map)
return item
def apply_background_color(self, item):
if self.cfg.background_color is not None:
assert (
"alpha_map" in item
), "'alpha_map' is required to apply background color."
fg = item["rgb"]
if self.cfg.background_color == "white":
bg = np.ones_like(fg) * 255
elif self.cfg.background_color == "black":
bg = np.zeros_like(fg)
else:
raise NotImplementedError(
f"Unknown background color: {self.cfg.background_color}."
)
# w = item["alpha_map"][..., None] / 255
w = item["alpha_map"] / 255
img = (w * fg + (1 - w) * bg).astype(np.uint8)
item["rgb"] = img
return item
def get_property_path(
self,
name,
index: Optional[int] = None,
timestep_id: Optional[str] = None,
camera_id: Optional[str] = None,
):
p = self.properties[name]
folder = p["folder"] if "folder" in p else None
per_timestep = p["per_timestep"]
suffix = p["suffix"]
path = self.sequence_path
if folder is not None:
path = path / folder
if self.num_cameras > 1:
if camera_id is None:
assert (
index is not None), "index is required when camera_id is not provided."
camera_id = self.items[index]["camera_id"]
if "cam_id_prefix" in p:
camera_id = p["cam_id_prefix"] + camera_id
else:
camera_id = ""
if per_timestep:
if timestep_id is None:
assert index is not None, "index is required when timestep_id is not provided."
timestep_id = self.items[index]["timestep_id"]
if len(camera_id) > 0:
path /= f"{camera_id}_{timestep_id}.{suffix}"
else:
path /= f"{timestep_id}.{suffix}"
else:
if len(camera_id) > 0:
path /= f"{camera_id}.{suffix}"
else:
path = Path(str(path) + f".{suffix}")
return path
def get_property_path_list(self, name):
paths = []
for i in range(len(self.items)):
img_path = self.get_property_path(name, i)
paths.append(img_path)
return paths
@property
def num_timesteps(self):
return len(self.timestep_indices)
@property
def num_cameras(self):
return len(self.camera_ids)
if __name__ == "__main__":
import tyro
from tqdm import tqdm
from torch.utils.data import DataLoader
from vhap.config.base import DataConfig, import_module
cfg = tyro.cli(DataConfig)
cfg.use_landmark = False
dataset = import_module(cfg._target)(
cfg=cfg,
img_to_tensor=False,
batchify_all_views=True,
)
print(len(dataset))
sample = dataset[0]
print(sample.keys())
print(sample["rgb"].shape)
dataloader = DataLoader(dataset, batch_size=None, shuffle=False, num_workers=1)
for item in tqdm(dataloader):
pass