Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,200 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import os
from pathlib import Path
from copy import deepcopy
from typing import Optional
import numpy as np
import PIL.Image as Image
import torch
import torchvision.transforms.functional as F
from torch.utils.data import Dataset, default_collate
import json
from vhap.util.log import get_logger
from vhap.config.base import DataConfig
logger = get_logger(__name__)
class VideoDataset(Dataset):
def __init__(
self,
cfg: DataConfig,
img_to_tensor: bool = False,
batchify_all_views: bool = False,
):
"""
Args:
root_folder: Path to dataset with the following directory layout
<root_folder>/
|---images/
| |---<timestep_id>.jpg
|
|---alpha_maps/
| |---<timestep_id>.png
|
|---landmark2d/
|---face-alignment/
| |---<camera_id>.npz
|
|---STAR/
|---<camera_id>.npz
"""
super().__init__()
self.cfg = cfg
self.img_to_tensor = img_to_tensor
self.batchify_all_views = batchify_all_views
sequence_paths = self.match_sequences()
if len(sequence_paths) > 1:
logger.info(f"Found multiple sequences: {sequence_paths}")
raise ValueError(f"Found multiple sequences by '{cfg.sequence}': \n" + "\n\t".join([str(x) for x in sequence_paths]))
elif len(sequence_paths) == 0:
raise ValueError(f"Cannot find sequence: {cfg.sequence}")
self.sequence_path = sequence_paths[0]
logger.info(f"Initializing dataset from {self.sequence_path}")
self.define_properties()
self.load_camera_params()
# timesteps
self.timestep_ids = set(
f.split('.')[0].split('_')[-1]
for f in os.listdir(self.sequence_path / self.properties['rgb']['folder']) if f.endswith(self.properties['rgb']['suffix'])
)
self.timestep_ids = sorted(self.timestep_ids)
self.timestep_indices = list(range(len(self.timestep_ids)))
self.filter_division(cfg.division)
self.filter_subset(cfg.subset)
logger.info(f"number of timesteps: {self.num_timesteps}, number of cameras: {self.num_cameras}")
# collect
self.items = []
for fi, timestep_index in enumerate(self.timestep_indices):
for ci, camera_id in enumerate(self.camera_ids):
self.items.append(
{
"timestep_index": fi, # new index after filtering
"timestep_index_original": timestep_index, # original index
"timestep_id": self.timestep_ids[timestep_index],
"camera_index": ci,
"camera_id": camera_id,
}
)
def match_sequences(self):
logger.info(f"Looking for sequence '{self.cfg.sequence}' at {self.cfg.root_folder}")
return list(filter(lambda x: x.is_dir(), self.cfg.root_folder.glob(f"{self.cfg.sequence}*")))
def define_properties(self):
self.properties = {
"rgb": {
"folder": f"images_{self.cfg.n_downsample_rgb}"
if self.cfg.n_downsample_rgb
else "images",
"per_timestep": True,
# "suffix": "jpg",
"suffix": "png",
},
"alpha_map": {
"folder": "alpha_maps",
"per_timestep": True,
"suffix": "jpg",
},
"landmark2d/face-alignment": {
"folder": "landmark2d/face-alignment",
"per_timestep": False,
"suffix": "npz",
},
"landmark2d/STAR": {
"folder": "landmark2d/STAR",
"per_timestep": False,
"suffix": "npz",
},
"landmark2d/lms": {
"folder": "landmark2d/landmarks",
"per_timestep": False,
"suffix": "npz",
},
}
@staticmethod
def get_number_after_prefix(string, prefix):
i = string.find(prefix)
if i != -1:
number_begin = i + len(prefix)
assert number_begin < len(string), f"No number found behind prefix '{prefix}'"
assert string[number_begin].isdigit(), f"No number found behind prefix '{prefix}'"
non_digit_indices = [i for i, c in enumerate(string[number_begin:]) if not c.isdigit()]
if len(non_digit_indices) > 0:
number_end = number_begin + min(non_digit_indices)
return int(string[number_begin:number_end])
else:
return int(string[number_begin:])
else:
return None
def filter_division(self, division):
pass
def filter_subset(self, subset):
if subset is not None:
if 'ti' in subset:
ti = self.get_number_after_prefix(subset, 'ti')
if 'tj' in subset:
tj = self.get_number_after_prefix(subset, 'tj')
self.timestep_indices = self.timestep_indices[ti:tj+1]
else:
self.timestep_indices = self.timestep_indices[ti:ti+1]
elif 'tn' in subset:
tn = self.get_number_after_prefix(subset, 'tn')
tn_all = len(self.timestep_indices)
tn = min(tn, tn_all)
self.timestep_indices = self.timestep_indices[::tn_all // tn][:tn]
elif 'ts' in subset:
ts = self.get_number_after_prefix(subset, 'ts')
self.timestep_indices = self.timestep_indices[::ts]
if 'ci' in subset:
ci = self.get_number_after_prefix(subset, 'ci')
self.camera_ids = self.camera_ids[ci:ci+1]
elif 'cn' in subset:
cn = self.get_number_after_prefix(subset, 'cn')
cn_all = len(self.camera_ids)
cn = min(cn, cn_all)
self.camera_ids = self.camera_ids[::cn_all // cn][:cn]
elif 'cs' in subset:
cs = self.get_number_after_prefix(subset, 'cs')
self.camera_ids = self.camera_ids[::cs]
def load_camera_params(self):
self.camera_ids = ['0']
# Guessed focal length, height, width. Should be optimized or replaced by real values
f, h, w = 512, 512, 512
K = torch.Tensor([
[f, 0, w],
[0, f, h],
[0, 0, 1]
])
orientation = torch.eye(3)[None, ...] # (1, 3, 3)
location = torch.Tensor([0, 0, 1])[None, ..., None] # (1, 3, 1)
c2w = torch.cat([orientation, location], dim=-1) # camera-to-world transformation
if self.cfg.target_extrinsic_type == "w2c":
R = orientation.transpose(-1, -2)
T = orientation.transpose(-1, -2) @ -location
w2c = torch.cat([R, T], dim=-1) # world-to-camera transformation
extrinsic = w2c
elif self.cfg.target_extrinsic_type == "c2w":
extrinsic = c2w
else:
raise NotImplementedError(f"Unknown extrinsic type: {self.cfg.target_extrinsic_type}")
self.camera_params = {}
for i, camera_id in enumerate(self.camera_ids):
self.camera_params[camera_id] = {"intrinsic": K, "extrinsic": extrinsic[i]}
return self.camera_params
def __len__(self):
if self.batchify_all_views:
return self.num_timesteps
else:
return len(self.items)
def __getitem__(self, i):
if self.batchify_all_views:
return self.getitem_by_timestep(i)
else:
return self.getitem_single_image(i)
def getitem_single_image(self, i):
item = deepcopy(self.items[i])
rgb_path = self.get_property_path("rgb", i)
item["rgb"] = np.array(Image.open(rgb_path))[:, :, :3]
camera_param = self.camera_params[item["camera_id"]]
item["intrinsic"] = camera_param["intrinsic"].clone()
item["extrinsic"] = camera_param["extrinsic"].clone()
if self.cfg.use_alpha_map or self.cfg.background_color is not None:
alpha_path = self.get_property_path("alpha_map", i)
item["alpha_map"] = np.array(Image.open(alpha_path))
if self.cfg.use_landmark:
timestep_index = self.items[i]["timestep_index"]
landmark_path = self.get_property_path("landmark2d/lms", i)
landmark_npz = np.load(landmark_path)
lms_eyes_path = os.path.join(os.path.dirname(landmark_path),'iris.json')
item["lmk2d"] = landmark_npz["face_landmark_2d"][timestep_index] # (num_points, 3)
if (item["lmk2d"][:, :2] == -1).sum() > 0:
item["lmk2d"][:, 2:] = 0.0
else:
item["lmk2d"][:, 2:] = 1.0
if(os.path.exists(lms_eyes_path)):
with open(lms_eyes_path,'r') as f:
lms_eye = json.load(f)
lms_eye = np.array([lms_eye[key] for key in lms_eye][timestep_index]).reshape((2,2)) / 1024.
lms_eye = np.concatenate([lms_eye,np.ones((2,1))],axis=1)[(1,0),:]
item["lmk2d"] = np.concatenate([item["lmk2d"], lms_eye], 0)
else:
item["lmk2d"] = np.concatenate([item["lmk2d"]], 0)
item = self.apply_transforms(item)
return item
def getitem_by_timestep(self, timestep_index):
begin = timestep_index * self.num_cameras
indices = range(begin, begin + self.num_cameras)
item = default_collate([self.getitem_single_image(i) for i in indices])
item["num_cameras"] = self.num_cameras
return item
def apply_transforms(self, item):
item = self.apply_scale_factor(item)
item = self.apply_background_color(item)
item = self.apply_to_tensor(item)
return item
def apply_to_tensor(self, item):
if self.img_to_tensor:
if "rgb" in item:
item["rgb"] = F.to_tensor(item["rgb"])
if "alpha_map" in item:
item["alpha_map"] = F.to_tensor(item["alpha_map"])
return item
def apply_scale_factor(self, item):
assert self.cfg.scale_factor <= 1.0
if "rgb" in item:
H, W, _ = item["rgb"].shape
h, w = int(H * self.cfg.scale_factor), int(W * self.cfg.scale_factor)
rgb = Image.fromarray(item["rgb"]).resize(
(w, h), resample=Image.BILINEAR
)
item["rgb"] = np.array(rgb)
# properties that are defined based on image size
if "lmk2d" in item:
item["lmk2d"][..., 0] *= w
item["lmk2d"][..., 1] *= h
if "lmk2d_iris" in item:
item["lmk2d_iris"][..., 0] *= w
item["lmk2d_iris"][..., 1] *= h
if "bbox_2d" in item:
item["bbox_2d"][[0, 2]] *= w
item["bbox_2d"][[1, 3]] *= h
# properties need to be scaled down when rgb is downsampled
n_downsample_rgb = self.cfg.n_downsample_rgb if self.cfg.n_downsample_rgb else 1
scale_factor = self.cfg.scale_factor / n_downsample_rgb
item["scale_factor"] = scale_factor # NOTE: not self.cfg.scale_factor
if scale_factor < 1.0:
if "intrinsic" in item:
item["intrinsic"][:2] *= scale_factor
if "alpha_map" in item:
h, w = item["rgb"].shape[:2]
alpha_map = Image.fromarray(item["alpha_map"]).resize(
(w, h), Image.Resampling.BILINEAR
)
item["alpha_map"] = np.array(alpha_map)
return item
def apply_background_color(self, item):
if self.cfg.background_color is not None:
assert (
"alpha_map" in item
), "'alpha_map' is required to apply background color."
fg = item["rgb"]
if self.cfg.background_color == "white":
bg = np.ones_like(fg) * 255
elif self.cfg.background_color == "black":
bg = np.zeros_like(fg)
else:
raise NotImplementedError(
f"Unknown background color: {self.cfg.background_color}."
)
# w = item["alpha_map"][..., None] / 255
w = item["alpha_map"] / 255
img = (w * fg + (1 - w) * bg).astype(np.uint8)
item["rgb"] = img
return item
def get_property_path(
self,
name,
index: Optional[int] = None,
timestep_id: Optional[str] = None,
camera_id: Optional[str] = None,
):
p = self.properties[name]
folder = p["folder"] if "folder" in p else None
per_timestep = p["per_timestep"]
suffix = p["suffix"]
path = self.sequence_path
if folder is not None:
path = path / folder
if self.num_cameras > 1:
if camera_id is None:
assert (
index is not None), "index is required when camera_id is not provided."
camera_id = self.items[index]["camera_id"]
if "cam_id_prefix" in p:
camera_id = p["cam_id_prefix"] + camera_id
else:
camera_id = ""
if per_timestep:
if timestep_id is None:
assert index is not None, "index is required when timestep_id is not provided."
timestep_id = self.items[index]["timestep_id"]
if len(camera_id) > 0:
path /= f"{camera_id}_{timestep_id}.{suffix}"
else:
path /= f"{timestep_id}.{suffix}"
else:
if len(camera_id) > 0:
path /= f"{camera_id}.{suffix}"
else:
path = Path(str(path) + f".{suffix}")
return path
def get_property_path_list(self, name):
paths = []
for i in range(len(self.items)):
img_path = self.get_property_path(name, i)
paths.append(img_path)
return paths
@property
def num_timesteps(self):
return len(self.timestep_indices)
@property
def num_cameras(self):
return len(self.camera_ids)
if __name__ == "__main__":
import tyro
from tqdm import tqdm
from torch.utils.data import DataLoader
from vhap.config.base import DataConfig, import_module
cfg = tyro.cli(DataConfig)
cfg.use_landmark = False
dataset = import_module(cfg._target)(
cfg=cfg,
img_to_tensor=False,
batchify_all_views=True,
)
print(len(dataset))
sample = dataset[0]
print(sample.keys())
print(sample["rgb"].shape)
dataloader = DataLoader(dataset, batch_size=None, shuffle=False, num_workers=1)
for item in tqdm(dataloader):
pass
|