Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import os, cv2 | |
import matplotlib.pyplot as plt | |
import math | |
def depths_to_points(view, depthmap): | |
c2w = (view.world_view_transform.T).inverse() | |
if hasattr(view, "image_width"): | |
W, H = view.image_width, view.image_height | |
else: | |
W, H = view.width, view.height | |
ndc2pix = torch.tensor([ | |
[W / 2, 0, 0, (W) / 2], | |
[0, H / 2, 0, (H) / 2], | |
[0, 0, 0, 1]]).float().cuda().T | |
projection_matrix = c2w.T @ view.full_proj_transform | |
intrins = (projection_matrix @ ndc2pix)[:3,:3].T | |
grid_x, grid_y = torch.meshgrid(torch.arange(W, device='cuda').float(), torch.arange(H, device='cuda').float(), indexing='xy') | |
points = torch.stack([grid_x, grid_y, torch.ones_like(grid_x)], dim=-1).reshape(-1, 3) | |
rays_d = points @ intrins.inverse().T @ c2w[:3,:3].T | |
rays_o = c2w[:3,3] | |
points = depthmap.reshape(-1, 1) * rays_d + rays_o | |
return points | |
def depth_to_normal(view, depth): | |
""" | |
view: view camera | |
depth: depthmap | |
""" | |
points = depths_to_points(view, depth).reshape(*depth.shape[1:], 3) | |
output = torch.zeros_like(points) | |
dx = torch.cat([points[2:, 1:-1] - points[:-2, 1:-1]], dim=0) | |
dy = torch.cat([points[1:-1, 2:] - points[1:-1, :-2]], dim=1) | |
normal_map = torch.nn.functional.normalize(torch.cross(dx, dy, dim=-1), dim=-1) | |
output[1:-1, 1:-1, :] = normal_map | |
return output |