import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import os, cv2 import matplotlib.pyplot as plt import math def depths_to_points(view, depthmap): c2w = (view.world_view_transform.T).inverse() if hasattr(view, "image_width"): W, H = view.image_width, view.image_height else: W, H = view.width, view.height ndc2pix = torch.tensor([ [W / 2, 0, 0, (W) / 2], [0, H / 2, 0, (H) / 2], [0, 0, 0, 1]]).float().cuda().T projection_matrix = c2w.T @ view.full_proj_transform intrins = (projection_matrix @ ndc2pix)[:3,:3].T grid_x, grid_y = torch.meshgrid(torch.arange(W, device='cuda').float(), torch.arange(H, device='cuda').float(), indexing='xy') points = torch.stack([grid_x, grid_y, torch.ones_like(grid_x)], dim=-1).reshape(-1, 3) rays_d = points @ intrins.inverse().T @ c2w[:3,:3].T rays_o = c2w[:3,3] points = depthmap.reshape(-1, 1) * rays_d + rays_o return points def depth_to_normal(view, depth): """ view: view camera depth: depthmap """ points = depths_to_points(view, depth).reshape(*depth.shape[1:], 3) output = torch.zeros_like(points) dx = torch.cat([points[2:, 1:-1] - points[:-2, 1:-1]], dim=0) dy = torch.cat([points[1:-1, 2:] - points[1:-1, :-2]], dim=1) normal_map = torch.nn.functional.normalize(torch.cross(dx, dy, dim=-1), dim=-1) output[1:-1, 1:-1, :] = normal_map return output