LAM / lam /models /rendering /utils /mesh_utils.py
yuandong513
feat: init
17cd746
raw
history blame
14 kB
import os
import cv2
import math
import torch
import numpy as np
import torch.nn.functional as F
from collections import OrderedDict
from scipy.ndimage import morphology
from skimage.io import imsave
def dict2obj(d):
if isinstance(d, list):
d = [dict2obj(x) for x in d]
if not isinstance(d, dict):
return d
class C(object):
pass
o = C()
for k in d:
o.__dict__[k] = dict2obj(d[k])
return o
def check_mkdir(path):
if not os.path.exists(path):
print('making %s' % path)
os.makedirs(path)
def l2_distance(verts1, verts2):
return torch.sqrt(((verts1 - verts2) ** 2).sum(2)).mean(1).mean()
def quat2mat(quat):
"""Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [B, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
norm_quat = quat
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = torch.stack([w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz,
2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx,
2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
return rotMat
def batch_rodrigues(theta):
# theta N x 3
batch_size = theta.shape[0]
l1norm = torch.norm(theta + 1e-8, p=2, dim=1)
angle = torch.unsqueeze(l1norm, -1)
normalized = torch.div(theta, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_cos, v_sin * normalized], dim=1)
return quat2mat(quat)
def batch_orth_proj(X, camera):
'''
X is N x num_points x 3
'''
camera = camera.clone().view(-1, 1, 3)
X_trans = X[:, :, :2] + camera[:, :, 1:]
X_trans = torch.cat([X_trans, X[:, :, 2:]], 2)
shape = X_trans.shape
# Xn = (camera[:, :, 0] * X_trans.view(shape[0], -1)).view(shape)
Xn = (camera[:, :, 0:1] * X_trans)
return Xn
def batch_persp_proj(vertices, cam, f, t, orig_size=256, eps=1e-9):
'''
Calculate projective transformation of vertices given a projection matrix
Input parameters:
f: torch tensor of focal length
t: batch_size * 1 * 3 xyz translation in world coordinate
K: batch_size * 3 * 3 intrinsic camera matrix
R, t: batch_size * 3 * 3, batch_size * 1 * 3 extrinsic calibration parameters
dist_coeffs: vector of distortion coefficients
orig_size: original size of image captured by the camera
Returns: For each point [X,Y,Z] in world coordinates [u,v,z] where u,v are the coordinates of the projection in
pixels and z is the depth
'''
device = vertices.device
K = torch.tensor([f, 0., cam['c'][0], 0., f, cam['c'][1], 0., 0., 1.]).view(3, 3)[None, ...].repeat(
vertices.shape[0], 1).to(device)
R = batch_rodrigues(cam['r'][None, ...].repeat(vertices.shape[0], 1)).to(device)
dist_coeffs = cam['k'][None, ...].repeat(vertices.shape[0], 1).to(device)
vertices = torch.matmul(vertices, R.transpose(2, 1)) + t
x, y, z = vertices[:, :, 0], vertices[:, :, 1], vertices[:, :, 2]
x_ = x / (z + eps)
y_ = y / (z + eps)
# Get distortion coefficients from vector
k1 = dist_coeffs[:, None, 0]
k2 = dist_coeffs[:, None, 1]
p1 = dist_coeffs[:, None, 2]
p2 = dist_coeffs[:, None, 3]
k3 = dist_coeffs[:, None, 4]
# we use x_ for x' and x__ for x'' etc.
r = torch.sqrt(x_ ** 2 + y_ ** 2)
x__ = x_ * (1 + k1 * (r ** 2) + k2 * (r ** 4) + k3 * (r ** 6)) + 2 * p1 * x_ * y_ + p2 * (r ** 2 + 2 * x_ ** 2)
y__ = y_ * (1 + k1 * (r ** 2) + k2 * (r ** 4) + k3 * (r ** 6)) + p1 * (r ** 2 + 2 * y_ ** 2) + 2 * p2 * x_ * y_
vertices = torch.stack([x__, y__, torch.ones_like(z)], dim=-1)
vertices = torch.matmul(vertices, K.transpose(1, 2))
u, v = vertices[:, :, 0], vertices[:, :, 1]
v = orig_size - v
# map u,v from [0, img_size] to [-1, 1] to be compatible with the renderer
u = 2 * (u - orig_size / 2.) / orig_size
v = 2 * (v - orig_size / 2.) / orig_size
vertices = torch.stack([u, v, z], dim=-1)
return vertices
def face_vertices(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of faces, 3, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (vertices.shape[2] == 3)
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
vertices = vertices.reshape((bs * nv, 3))
# pytorch only supports long and byte tensors for indexing
return vertices[faces.long()]
def vertex_normals(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of vertices, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (vertices.shape[2] == 3)
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
normals = torch.zeros(bs * nv, 3).to(device)
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] # expanded faces
vertices_faces = vertices.reshape((bs * nv, 3))[faces.long()]
faces = faces.view(-1, 3)
vertices_faces = vertices_faces.view(-1, 3, 3)
normals.index_add_(0, faces[:, 1].long(),
torch.cross(vertices_faces[:, 2] - vertices_faces[:, 1], vertices_faces[:, 0] - vertices_faces[:, 1]))
normals.index_add_(0, faces[:, 2].long(),
torch.cross(vertices_faces[:, 0] - vertices_faces[:, 2], vertices_faces[:, 1] - vertices_faces[:, 2]))
normals.index_add_(0, faces[:, 0].long(),
torch.cross(vertices_faces[:, 1] - vertices_faces[:, 0], vertices_faces[:, 2] - vertices_faces[:, 0]))
normals = F.normalize(normals, eps=1e-6, dim=1)
normals = normals.reshape((bs, nv, 3))
# pytorch only supports long and byte tensors for indexing
return normals
def tensor_vis_landmarks(images, landmarks, gt_landmarks=None, color='g', isScale=True):
# visualize landmarks
vis_landmarks = []
images = images.cpu().numpy()
predicted_landmarks = landmarks.detach().cpu().numpy()
if gt_landmarks is not None:
gt_landmarks_np = gt_landmarks.detach().cpu().numpy()
for i in range(images.shape[0]):
image = images[i]
image = image.transpose(1, 2, 0)[:, :, [2, 1, 0]].copy();
image = (image * 255)
if isScale:
predicted_landmark = predicted_landmarks[i] * image.shape[0] / 2 + image.shape[0] / 2
else:
predicted_landmark = predicted_landmarks[i]
if predicted_landmark.shape[0] == 68:
image_landmarks = plot_kpts(image, predicted_landmark, color)
if gt_landmarks is not None:
image_landmarks = plot_verts(image_landmarks,
gt_landmarks_np[i] * image.shape[0] / 2 + image.shape[0] / 2, 'r')
else:
image_landmarks = plot_verts(image, predicted_landmark, color)
if gt_landmarks is not None:
image_landmarks = plot_verts(image_landmarks,
gt_landmarks_np[i] * image.shape[0] / 2 + image.shape[0] / 2, 'r')
vis_landmarks.append(image_landmarks)
vis_landmarks = np.stack(vis_landmarks)
vis_landmarks = torch.from_numpy(
vis_landmarks[:, :, :, [2, 1, 0]].transpose(0, 3, 1, 2)) / 255. # , dtype=torch.float32)
return vis_landmarks
end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype = np.int32) - 1
def plot_kpts(image, kpts, color = 'r'):
''' Draw 68 key points
Args:
image: the input image
kpt: (68, 3).
'''
if color == 'r':
c = (255, 0, 0)
elif color == 'g':
c = (0, 255, 0)
elif color == 'b':
c = (255, 0, 0)
image = image.copy()
kpts = kpts.copy()
for i in range(kpts.shape[0]):
st = kpts[i, :2]
if kpts.shape[1]==4:
if kpts[i, 3] > 0.5:
c = (0, 255, 0)
else:
c = (0, 0, 255)
image = cv2.circle(image,(st[0], st[1]), 1, c, 2)
if i in end_list:
continue
ed = kpts[i + 1, :2]
image = cv2.line(image, (st[0], st[1]), (ed[0], ed[1]), (255, 255, 255), 1)
return image
def save_obj(filename, vertices, faces, textures=None, uvcoords=None, uvfaces=None, texture_type='surface'):
assert vertices.ndimension() == 2
assert faces.ndimension() == 2
assert texture_type in ['surface', 'vertex']
# assert texture_res >= 2
if textures is not None and texture_type == 'surface':
textures =textures.detach().cpu().numpy().transpose(1,2,0)
filename_mtl = filename[:-4] + '.mtl'
filename_texture = filename[:-4] + '.png'
material_name = 'material_1'
# texture_image, vertices_textures = create_texture_image(textures, texture_res)
texture_image = textures
texture_image = texture_image.clip(0, 1)
texture_image = (texture_image * 255).astype('uint8')
imsave(filename_texture, texture_image)
faces = faces.detach().cpu().numpy()
with open(filename, 'w') as f:
f.write('# %s\n' % os.path.basename(filename))
f.write('#\n')
f.write('\n')
if textures is not None and texture_type != "vertex":
f.write('mtllib %s\n\n' % os.path.basename(filename_mtl))
if textures is not None and texture_type == 'vertex':
for vertex, color in zip(vertices, textures):
f.write('v %.8f %.8f %.8f %.8f %.8f %.8f\n' % (vertex[0], vertex[1], vertex[2],
color[0], color[1], color[2]))
f.write('\n')
else:
for vertex in vertices:
f.write('v %.8f %.8f %.8f\n' % (vertex[0], vertex[1], vertex[2]))
f.write('\n')
if textures is not None and texture_type == 'surface':
for vertex in uvcoords.reshape((-1, 2)):
f.write('vt %.8f %.8f\n' % (vertex[0], vertex[1]))
f.write('\n')
f.write('usemtl %s\n' % material_name)
for i, face in enumerate(faces):
f.write('f %d/%d %d/%d %d/%d\n' % (
face[0] + 1, uvfaces[i,0]+1, face[1] + 1, uvfaces[i,1]+1, face[2] + 1, uvfaces[i,2]+1))
f.write('\n')
else:
for face in faces:
f.write('f %d %d %d\n' % (face[0] + 1, face[1] + 1, face[2] + 1))
if textures is not None and texture_type == 'surface':
with open(filename_mtl, 'w') as f:
f.write('newmtl %s\n' % material_name)
f.write('map_Kd %s\n' % os.path.basename(filename_texture))
def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return torch.sum(x*y, -1, keepdim=True)
def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor:
return 2*dot(x, n)*n - x
def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN
def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
return x / length(x, eps)
def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor:
return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w)
def compute_face_normals(verts, faces):
i0 = faces[..., 0].long()
i1 = faces[..., 1].long()
i2 = faces[..., 2].long()
v0 = verts[..., i0, :]
v1 = verts[..., i1, :]
v2 = verts[..., i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
return face_normals
def compute_face_orientation(verts, faces, return_scale=False):
i0 = faces[..., 0].long()
i1 = faces[..., 1].long()
i2 = faces[..., 2].long()
v0 = verts[..., i0, :]
v1 = verts[..., i1, :]
v2 = verts[..., i2, :]
a0 = safe_normalize(v1 - v0)
a1 = safe_normalize(torch.cross(a0, v2 - v0, dim=-1))
a2 = -safe_normalize(torch.cross(a1, a0, dim=-1)) # will have artifacts without negation
orientation = torch.cat([a0[..., None], a1[..., None], a2[..., None]], dim=-1)
if return_scale:
s0 = length(v1 - v0)
s1 = dot(a2, (v2 - v0)).abs()
scale = (s0 + s1) / 2
else:
scale = None
return orientation, scale
def compute_vertex_normals(verts, faces):
i0 = faces[..., 0].long()
i1 = faces[..., 1].long()
i2 = faces[..., 2].long()
v0 = verts[..., i0, :]
v1 = verts[..., i1, :]
v2 = verts[..., i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
v_normals = torch.zeros_like(verts)
N = verts.shape[0]
v_normals.scatter_add_(1, i0[..., None].repeat(N, 1, 3), face_normals)
v_normals.scatter_add_(1, i1[..., None].repeat(N, 1, 3), face_normals)
v_normals.scatter_add_(1, i2[..., None].repeat(N, 1, 3), face_normals)
v_normals = torch.where(dot(v_normals, v_normals) > 1e-20, v_normals, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda'))
v_normals = safe_normalize(v_normals)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(v_normals))
return v_normals