Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,950 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import os
import cv2
import math
import torch
import numpy as np
import torch.nn.functional as F
from collections import OrderedDict
from scipy.ndimage import morphology
from skimage.io import imsave
def dict2obj(d):
if isinstance(d, list):
d = [dict2obj(x) for x in d]
if not isinstance(d, dict):
return d
class C(object):
pass
o = C()
for k in d:
o.__dict__[k] = dict2obj(d[k])
return o
def check_mkdir(path):
if not os.path.exists(path):
print('making %s' % path)
os.makedirs(path)
def l2_distance(verts1, verts2):
return torch.sqrt(((verts1 - verts2) ** 2).sum(2)).mean(1).mean()
def quat2mat(quat):
"""Convert quaternion coefficients to rotation matrix.
Args:
quat: size = [B, 4] 4 <===>(w, x, y, z)
Returns:
Rotation matrix corresponding to the quaternion -- size = [B, 3, 3]
"""
norm_quat = quat
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = torch.stack([w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz,
2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx,
2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
return rotMat
def batch_rodrigues(theta):
# theta N x 3
batch_size = theta.shape[0]
l1norm = torch.norm(theta + 1e-8, p=2, dim=1)
angle = torch.unsqueeze(l1norm, -1)
normalized = torch.div(theta, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_cos, v_sin * normalized], dim=1)
return quat2mat(quat)
def batch_orth_proj(X, camera):
'''
X is N x num_points x 3
'''
camera = camera.clone().view(-1, 1, 3)
X_trans = X[:, :, :2] + camera[:, :, 1:]
X_trans = torch.cat([X_trans, X[:, :, 2:]], 2)
shape = X_trans.shape
# Xn = (camera[:, :, 0] * X_trans.view(shape[0], -1)).view(shape)
Xn = (camera[:, :, 0:1] * X_trans)
return Xn
def batch_persp_proj(vertices, cam, f, t, orig_size=256, eps=1e-9):
'''
Calculate projective transformation of vertices given a projection matrix
Input parameters:
f: torch tensor of focal length
t: batch_size * 1 * 3 xyz translation in world coordinate
K: batch_size * 3 * 3 intrinsic camera matrix
R, t: batch_size * 3 * 3, batch_size * 1 * 3 extrinsic calibration parameters
dist_coeffs: vector of distortion coefficients
orig_size: original size of image captured by the camera
Returns: For each point [X,Y,Z] in world coordinates [u,v,z] where u,v are the coordinates of the projection in
pixels and z is the depth
'''
device = vertices.device
K = torch.tensor([f, 0., cam['c'][0], 0., f, cam['c'][1], 0., 0., 1.]).view(3, 3)[None, ...].repeat(
vertices.shape[0], 1).to(device)
R = batch_rodrigues(cam['r'][None, ...].repeat(vertices.shape[0], 1)).to(device)
dist_coeffs = cam['k'][None, ...].repeat(vertices.shape[0], 1).to(device)
vertices = torch.matmul(vertices, R.transpose(2, 1)) + t
x, y, z = vertices[:, :, 0], vertices[:, :, 1], vertices[:, :, 2]
x_ = x / (z + eps)
y_ = y / (z + eps)
# Get distortion coefficients from vector
k1 = dist_coeffs[:, None, 0]
k2 = dist_coeffs[:, None, 1]
p1 = dist_coeffs[:, None, 2]
p2 = dist_coeffs[:, None, 3]
k3 = dist_coeffs[:, None, 4]
# we use x_ for x' and x__ for x'' etc.
r = torch.sqrt(x_ ** 2 + y_ ** 2)
x__ = x_ * (1 + k1 * (r ** 2) + k2 * (r ** 4) + k3 * (r ** 6)) + 2 * p1 * x_ * y_ + p2 * (r ** 2 + 2 * x_ ** 2)
y__ = y_ * (1 + k1 * (r ** 2) + k2 * (r ** 4) + k3 * (r ** 6)) + p1 * (r ** 2 + 2 * y_ ** 2) + 2 * p2 * x_ * y_
vertices = torch.stack([x__, y__, torch.ones_like(z)], dim=-1)
vertices = torch.matmul(vertices, K.transpose(1, 2))
u, v = vertices[:, :, 0], vertices[:, :, 1]
v = orig_size - v
# map u,v from [0, img_size] to [-1, 1] to be compatible with the renderer
u = 2 * (u - orig_size / 2.) / orig_size
v = 2 * (v - orig_size / 2.) / orig_size
vertices = torch.stack([u, v, z], dim=-1)
return vertices
def face_vertices(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of faces, 3, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (vertices.shape[2] == 3)
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
vertices = vertices.reshape((bs * nv, 3))
# pytorch only supports long and byte tensors for indexing
return vertices[faces.long()]
def vertex_normals(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of vertices, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (vertices.shape[2] == 3)
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
normals = torch.zeros(bs * nv, 3).to(device)
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] # expanded faces
vertices_faces = vertices.reshape((bs * nv, 3))[faces.long()]
faces = faces.view(-1, 3)
vertices_faces = vertices_faces.view(-1, 3, 3)
normals.index_add_(0, faces[:, 1].long(),
torch.cross(vertices_faces[:, 2] - vertices_faces[:, 1], vertices_faces[:, 0] - vertices_faces[:, 1]))
normals.index_add_(0, faces[:, 2].long(),
torch.cross(vertices_faces[:, 0] - vertices_faces[:, 2], vertices_faces[:, 1] - vertices_faces[:, 2]))
normals.index_add_(0, faces[:, 0].long(),
torch.cross(vertices_faces[:, 1] - vertices_faces[:, 0], vertices_faces[:, 2] - vertices_faces[:, 0]))
normals = F.normalize(normals, eps=1e-6, dim=1)
normals = normals.reshape((bs, nv, 3))
# pytorch only supports long and byte tensors for indexing
return normals
def tensor_vis_landmarks(images, landmarks, gt_landmarks=None, color='g', isScale=True):
# visualize landmarks
vis_landmarks = []
images = images.cpu().numpy()
predicted_landmarks = landmarks.detach().cpu().numpy()
if gt_landmarks is not None:
gt_landmarks_np = gt_landmarks.detach().cpu().numpy()
for i in range(images.shape[0]):
image = images[i]
image = image.transpose(1, 2, 0)[:, :, [2, 1, 0]].copy();
image = (image * 255)
if isScale:
predicted_landmark = predicted_landmarks[i] * image.shape[0] / 2 + image.shape[0] / 2
else:
predicted_landmark = predicted_landmarks[i]
if predicted_landmark.shape[0] == 68:
image_landmarks = plot_kpts(image, predicted_landmark, color)
if gt_landmarks is not None:
image_landmarks = plot_verts(image_landmarks,
gt_landmarks_np[i] * image.shape[0] / 2 + image.shape[0] / 2, 'r')
else:
image_landmarks = plot_verts(image, predicted_landmark, color)
if gt_landmarks is not None:
image_landmarks = plot_verts(image_landmarks,
gt_landmarks_np[i] * image.shape[0] / 2 + image.shape[0] / 2, 'r')
vis_landmarks.append(image_landmarks)
vis_landmarks = np.stack(vis_landmarks)
vis_landmarks = torch.from_numpy(
vis_landmarks[:, :, :, [2, 1, 0]].transpose(0, 3, 1, 2)) / 255. # , dtype=torch.float32)
return vis_landmarks
end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype = np.int32) - 1
def plot_kpts(image, kpts, color = 'r'):
''' Draw 68 key points
Args:
image: the input image
kpt: (68, 3).
'''
if color == 'r':
c = (255, 0, 0)
elif color == 'g':
c = (0, 255, 0)
elif color == 'b':
c = (255, 0, 0)
image = image.copy()
kpts = kpts.copy()
for i in range(kpts.shape[0]):
st = kpts[i, :2]
if kpts.shape[1]==4:
if kpts[i, 3] > 0.5:
c = (0, 255, 0)
else:
c = (0, 0, 255)
image = cv2.circle(image,(st[0], st[1]), 1, c, 2)
if i in end_list:
continue
ed = kpts[i + 1, :2]
image = cv2.line(image, (st[0], st[1]), (ed[0], ed[1]), (255, 255, 255), 1)
return image
def save_obj(filename, vertices, faces, textures=None, uvcoords=None, uvfaces=None, texture_type='surface'):
assert vertices.ndimension() == 2
assert faces.ndimension() == 2
assert texture_type in ['surface', 'vertex']
# assert texture_res >= 2
if textures is not None and texture_type == 'surface':
textures =textures.detach().cpu().numpy().transpose(1,2,0)
filename_mtl = filename[:-4] + '.mtl'
filename_texture = filename[:-4] + '.png'
material_name = 'material_1'
# texture_image, vertices_textures = create_texture_image(textures, texture_res)
texture_image = textures
texture_image = texture_image.clip(0, 1)
texture_image = (texture_image * 255).astype('uint8')
imsave(filename_texture, texture_image)
faces = faces.detach().cpu().numpy()
with open(filename, 'w') as f:
f.write('# %s\n' % os.path.basename(filename))
f.write('#\n')
f.write('\n')
if textures is not None and texture_type != "vertex":
f.write('mtllib %s\n\n' % os.path.basename(filename_mtl))
if textures is not None and texture_type == 'vertex':
for vertex, color in zip(vertices, textures):
f.write('v %.8f %.8f %.8f %.8f %.8f %.8f\n' % (vertex[0], vertex[1], vertex[2],
color[0], color[1], color[2]))
f.write('\n')
else:
for vertex in vertices:
f.write('v %.8f %.8f %.8f\n' % (vertex[0], vertex[1], vertex[2]))
f.write('\n')
if textures is not None and texture_type == 'surface':
for vertex in uvcoords.reshape((-1, 2)):
f.write('vt %.8f %.8f\n' % (vertex[0], vertex[1]))
f.write('\n')
f.write('usemtl %s\n' % material_name)
for i, face in enumerate(faces):
f.write('f %d/%d %d/%d %d/%d\n' % (
face[0] + 1, uvfaces[i,0]+1, face[1] + 1, uvfaces[i,1]+1, face[2] + 1, uvfaces[i,2]+1))
f.write('\n')
else:
for face in faces:
f.write('f %d %d %d\n' % (face[0] + 1, face[1] + 1, face[2] + 1))
if textures is not None and texture_type == 'surface':
with open(filename_mtl, 'w') as f:
f.write('newmtl %s\n' % material_name)
f.write('map_Kd %s\n' % os.path.basename(filename_texture))
def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return torch.sum(x*y, -1, keepdim=True)
def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor:
return 2*dot(x, n)*n - x
def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
return torch.sqrt(torch.clamp(dot(x,x), min=eps)) # Clamp to avoid nan gradients because grad(sqrt(0)) = NaN
def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor:
return x / length(x, eps)
def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor:
return torch.nn.functional.pad(x, pad=(0,1), mode='constant', value=w)
def compute_face_normals(verts, faces):
i0 = faces[..., 0].long()
i1 = faces[..., 1].long()
i2 = faces[..., 2].long()
v0 = verts[..., i0, :]
v1 = verts[..., i1, :]
v2 = verts[..., i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
return face_normals
def compute_face_orientation(verts, faces, return_scale=False):
i0 = faces[..., 0].long()
i1 = faces[..., 1].long()
i2 = faces[..., 2].long()
v0 = verts[..., i0, :]
v1 = verts[..., i1, :]
v2 = verts[..., i2, :]
a0 = safe_normalize(v1 - v0)
a1 = safe_normalize(torch.cross(a0, v2 - v0, dim=-1))
a2 = -safe_normalize(torch.cross(a1, a0, dim=-1)) # will have artifacts without negation
orientation = torch.cat([a0[..., None], a1[..., None], a2[..., None]], dim=-1)
if return_scale:
s0 = length(v1 - v0)
s1 = dot(a2, (v2 - v0)).abs()
scale = (s0 + s1) / 2
else:
scale = None
return orientation, scale
def compute_vertex_normals(verts, faces):
i0 = faces[..., 0].long()
i1 = faces[..., 1].long()
i2 = faces[..., 2].long()
v0 = verts[..., i0, :]
v1 = verts[..., i1, :]
v2 = verts[..., i2, :]
face_normals = torch.cross(v1 - v0, v2 - v0, dim=-1)
v_normals = torch.zeros_like(verts)
N = verts.shape[0]
v_normals.scatter_add_(1, i0[..., None].repeat(N, 1, 3), face_normals)
v_normals.scatter_add_(1, i1[..., None].repeat(N, 1, 3), face_normals)
v_normals.scatter_add_(1, i2[..., None].repeat(N, 1, 3), face_normals)
v_normals = torch.where(dot(v_normals, v_normals) > 1e-20, v_normals, torch.tensor([0.0, 0.0, 1.0], dtype=torch.float32, device='cuda'))
v_normals = safe_normalize(v_normals)
if torch.is_anomaly_enabled():
assert torch.all(torch.isfinite(v_normals))
return v_normals |