Update app.py
Browse files
app.py
CHANGED
@@ -118,7 +118,11 @@ def infer_30(
|
|
118 |
torch.set_float32_matmul_precision("highest")
|
119 |
seed = random.randint(0, MAX_SEED)
|
120 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
121 |
-
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids
|
|
|
|
|
|
|
|
|
122 |
print('-- generating image --')
|
123 |
sd_image = pipe(
|
124 |
prompt_embeds = pipe.text_encoder(input_ids)[0], #ensure that the input_ids are on the correct device.
|
@@ -170,7 +174,11 @@ def infer_60(
|
|
170 |
torch.set_float32_matmul_precision("highest")
|
171 |
seed = random.randint(0, MAX_SEED)
|
172 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
173 |
-
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids
|
|
|
|
|
|
|
|
|
174 |
print('-- generating image --')
|
175 |
sd_image = pipe(
|
176 |
prompt_embeds = pipe.text_encoder(input_ids)[0], #ensure that the input_ids are on the correct device.
|
@@ -222,7 +230,11 @@ def infer_90(
|
|
222 |
torch.set_float32_matmul_precision("highest")
|
223 |
seed = random.randint(0, MAX_SEED)
|
224 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
225 |
-
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids
|
|
|
|
|
|
|
|
|
226 |
print('-- generating image --')
|
227 |
sd_image = pipe(
|
228 |
prompt_embeds = pipe.text_encoder(input_ids)[0], #ensure that the input_ids are on the correct device.
|
|
|
118 |
torch.set_float32_matmul_precision("highest")
|
119 |
seed = random.randint(0, MAX_SEED)
|
120 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
121 |
+
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids
|
122 |
+
max_length = 77
|
123 |
+
if input_ids.shape[1] > max_length:
|
124 |
+
input_ids = input_ids[:, :max_length]
|
125 |
+
input_ids = input_ids.to(device)
|
126 |
print('-- generating image --')
|
127 |
sd_image = pipe(
|
128 |
prompt_embeds = pipe.text_encoder(input_ids)[0], #ensure that the input_ids are on the correct device.
|
|
|
174 |
torch.set_float32_matmul_precision("highest")
|
175 |
seed = random.randint(0, MAX_SEED)
|
176 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
177 |
+
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids
|
178 |
+
max_length = 77
|
179 |
+
if input_ids.shape[1] > max_length:
|
180 |
+
input_ids = input_ids[:, :max_length]
|
181 |
+
input_ids = input_ids.to(device)
|
182 |
print('-- generating image --')
|
183 |
sd_image = pipe(
|
184 |
prompt_embeds = pipe.text_encoder(input_ids)[0], #ensure that the input_ids are on the correct device.
|
|
|
230 |
torch.set_float32_matmul_precision("highest")
|
231 |
seed = random.randint(0, MAX_SEED)
|
232 |
generator = torch.Generator(device='cuda').manual_seed(seed)
|
233 |
+
input_ids = pipe.tokenizer(prompt, return_tensors="pt").input_ids
|
234 |
+
max_length = 77
|
235 |
+
if input_ids.shape[1] > max_length:
|
236 |
+
input_ids = input_ids[:, :max_length]
|
237 |
+
input_ids = input_ids.to(device)
|
238 |
print('-- generating image --')
|
239 |
sd_image = pipe(
|
240 |
prompt_embeds = pipe.text_encoder(input_ids)[0], #ensure that the input_ids are on the correct device.
|