1inkusFace's picture
Update app.py
ddec57b verified
raw
history blame
17.2 kB
import subprocess
subprocess.run(['sh', './spaces.sh'])
import spaces
import os
os.environ['PYTORCH_NVML_BASED_CUDA_CHECK'] = '1'
os.environ['TORCH_LINALG_PREFER_CUSOLVER'] = '1'
os.environ['PYTORCH_ALLOC_CONF'] = 'expandable_segments:True,pinned_use_background_threads:True'
os.environ["SAFETENSORS_FAST_GPU"] = "1"
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = '1'
import torch
torch.backends.cuda.matmul.allow_tf32 = False # torch 2.8
torch.backends.cudnn.allow_tf32 = False # torch 2.8
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
#torch.backends.fp32_precision = "ieee" torch 2.9
#torch.backends.cuda.matmul.fp32_precision = "ieee" torch 2.9
#torch.backends.cudnn.fp32_precision = "ieee" torch 2.9
#torch.backends.cudnn.conv.fp32_precision = "ieee" torch 2.9
#torch.backends.cudnn.rnn.fp32_precision = "ieee" torch 2.9
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
import gradio as gr
import numpy as np
import random
import datetime
import threading
import io
from PIL import Image
# For Ultra HDR
import pillow_ultrahdr
from google.oauth2 import service_account
from google.cloud import storage
import torch
@spaces.GPU(required=True)
def install_dependencies():
subprocess.run(['sh', './flashattn.sh'])
# Install the UltraHDR library
print("Installing pillow-ultrahdr...")
subprocess.run(['pip', 'install', 'pillow-ultrahdr'])
print("βœ… pillow-ultrahdr installed.")
# Install all dependencies
# install_dependencies()
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.backends.cuda.preferred_linalg_library="cusolver"
torch.set_float32_matmul_precision("highest")
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, AutoencoderKL
from image_gen_aux import UpscaleWithModel
GCS_BUCKET_NAME = os.getenv("GCS_BUCKET_NAME")
GCS_SA_KEY = os.getenv("GCS_SA_KEY") # The full JSON key content as a string
gcs_client = None
if GCS_SA_KEY and GCS_BUCKET_NAME:
try:
credentials_info = eval(GCS_SA_KEY) # Using eval is safe here if you trust the secret source
credentials = service_account.Credentials.from_service_account_info(credentials_info)
gcs_client = storage.Client(credentials=credentials)
print("βœ… GCS Client initialized successfully.")
except Exception as e:
print(f"❌ Failed to initialize GCS client: ")
def upload_to_gcs(image_bytes, filename):
if not gcs_client:
print("⚠️ GCS client not initialized. Skipping upload.")
return
try:
print(f"--> Starting GCS upload for {filename}...")
bucket = gcs_client.bucket(GCS_BUCKET_NAME)
blob = bucket.blob(f"stablediff/{filename}")
# The image_bytes is already a bytes object, so we can upload it directly
blob.upload_from_string(image_bytes, content_type='image/jpeg')
print(f"βœ… Successfully uploaded {filename} to GCS.")
except Exception as e:
print(f"❌ An error occurred during GCS upload for {filename}: {e}")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
from diffusers.models.attention_processor import AttnProcessor2_0
from kernels import get_kernel
fa3_kernel = get_kernel("kernels-community/flash-attn3") # Or vllm-flash-attn3
class FlashAttentionProcessor(AttnProcessor2_0):
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None, # This will be present for cross-attention
attention_mask=None,
temb=None, # This might be present in some attention mechanisms, pass through if not used directly
**kwargs,
):
# Determine if it's self-attention or cross-attention
# For self-attention, encoder_hidden_states is None or identical to hidden_states
is_cross_attention = encoder_hidden_states is not None and encoder_hidden_states.shape[1] != hidden_states.shape[1]
# SD3.5 uses DiT, where hidden_states are often 3D (B, Seq, Dim)
# However, attention can be within a transformer block which might internally reshape.
# Ensure your inputs (query, key, value) are properly shaped for the kernel.
# The kernel expects (Batch, Heads, Sequence, Dim_Head)
query = attn.to_q(hidden_states)
if is_cross_attention:
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
else: # Self-attention
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
scale = attn.scale
query = query * scale
b, t, c = query.shape # B=batch_size, T=sequence_length, C=embedding_dim
h = attn.heads
d = c // h # dim_per_head
# Reshape to (Batch, Heads, Sequence, Dim_Head) for Flash Attention kernel
q_reshaped = query.reshape(b, t, h, d).permute(0, 2, 1, 3)
k_reshaped = key.reshape(b, t, h, d).permute(0, 2, 1, 3)
v_reshaped = value.reshape(b, t, h, d).permute(0, 2, 1, 3)
out_reshaped = torch.empty_like(q_reshaped)
# Call the Flash Attention kernel
fa3_kernel.attention(q_reshaped, k_reshaped, v_reshaped, out_reshaped)
# Reshape output back to (Batch, Sequence, Heads * Dim_Head)
out = out_reshaped.permute(0, 2, 1, 3).reshape(b, t, c)
out = attn.to_out(out)
return out
@spaces.GPU(duration=120)
def compile_transformer():
with spaces.aoti_capture(pipe.transformer) as call:
pipe("A majestic, ancient Egyptian Sphinx stands sentinel in a large, clear pool under a bright, golden desert sun. Around its weathered stone base, several sleek, playful dolphins gracefully navigate the turquoise waters. The surrounding environment features lush, exotic papyrus plants and distant pyramids under a cloudless sky, conveying a sense of timeless wonder and serene majesty.")
exported = torch.export.export(
pipe.transformer,
args=call.args,
kwargs=call.kwargs,
)
return spaces.aoti_compile(exported)
def load_model():
pipe = StableDiffusion3Pipeline.from_pretrained(
"ford442/stable-diffusion-3.5-large-bf16",
trust_remote_code=True,
transformer=None, # Load transformer separately
use_safetensors=True
)
ll_transformer=SD3Transformer2DModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='transformer').to(device, dtype=torch.bfloat16)
pipe.transformer=ll_transformer
pipe.load_lora_weights("ford442/sdxl-vae-bf16", weight_name="LoRA/UltraReal.safetensors")
pipe.to(device=device, dtype=torch.bfloat16)
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(device)
return pipe, upscaler_2
def srgb_to_linear(img_tensor):
"""Converts a batched sRGB tensor [0, 1] to a linear tensor."""
# Using the standard sRGB to linear conversion formula
return torch.where(
img_tensor <= 0.04045,
img_tensor / 12.92,
((img_tensor + 0.055) / 1.055).pow(2.4)
)
pipe, upscaler_2 = load_model()
fa_processor = FlashAttentionProcessor()
for name, module in pipe.transformer.named_modules():
if isinstance(module, AttnProcessor2_0):
module.processor = fa_processor
compiled_transformer = compile_transformer()
spaces.aoti_apply(compiled_transformer, pipe.transformer)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
# Consolidated generation function
def generate_images(duration, prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress=gr.Progress(track_tqdm=True)):
@spaces.GPU(duration=duration)
def _generate():
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
print('-- generating image --')
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
# Generate tensor output in sRGB space
sd_image_tensor_srgb = pipe(
prompt=prompt, prompt_2=prompt, prompt_3=prompt,
negative_prompt=neg_prompt_1, negative_prompt_2=neg_prompt_2, negative_prompt_3=neg_prompt_3,
guidance_scale=guidance, num_inference_steps=steps,
width=width, height=height, generator=generator,
max_sequence_length=384,
output_type="pt" # Request tensor output
).images
# Convert the sRGB tensor [0,1] to a PIL Image for display and upscaling
sd_image_pil_srgb = Image.fromarray((sd_image_tensor_srgb.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8))
print('-- got image --')
# --- Upscaling ---
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
with torch.no_grad():
upscale = upscaler_2(sd_image_pil_srgb, tiling=True, tile_width=256, tile_height=256)
upscale2 = upscaler_2(upscale, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
# --- HDR Conversion and Saving ---
# Convert the original sRGB tensor to linear space
sd_image_tensor_linear = srgb_to_linear(sd_image_tensor_srgb)
# Convert the linear tensor to a PIL Image (this will be HDR data)
sd_image_pil_linear = Image.fromarray((sd_image_tensor_linear.squeeze(0).permute(1, 2, 0).clamp(0, 1).cpu().numpy() * 255).astype(np.uint8))
# Save to a bytes buffer as JPEG Ultra HDR
buffer = io.BytesIO()
pillow_ultrahdr.save_ultrahdr(
sdr=sd_image_pil_srgb, # The standard dynamic range image
hdr=sd_image_pil_linear, # The linear (high dynamic range) image
outfile=buffer,
quality=90 # Standard JPEG quality setting
)
hdr_image_bytes = buffer.getvalue()
# For the upscaled image, we will do the same
# First convert upscaled PIL image to tensor, normalize to [0,1]
upscaled_tensor_srgb = torch.from_numpy(np.array(upscale2)).float().to(device) / 255.0
upscaled_tensor_srgb = upscaled_tensor_srgb.permute(2, 0, 1).unsqueeze(0) # HWC to BCHW
upscaled_tensor_linear = srgb_to_linear(upscaled_tensor_srgb)
upscaled_pil_linear = Image.fromarray((upscaled_tensor_linear.squeeze(0).permute(1, 2, 0).clamp(0, 1).cpu().numpy() * 255).astype(np.uint8))
upscaled_buffer = io.BytesIO()
pillow_ultrahdr.save_ultrahdr(sdr=upscale2, hdr=upscaled_pil_linear, outfile=upscaled_buffer, quality=95)
upscaled_hdr_image_bytes = upscaled_buffer.getvalue()
# Return the sRGB PIL image for display, and the HDR bytes for upload
return sd_image_pil_srgb, hdr_image_bytes, upscaled_hdr_image_bytes, prompt
return _generate()
# Consolidated upload function
def run_inference_and_upload(duration, prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, save_consent, progress=gr.Progress(track_tqdm=True)):
# Generate images and get both PIL (for display) and bytes (for upload)
sd_image_pil, sd_hdr_bytes, upscaled_hdr_bytes, expanded_prompt = generate_images(
duration, prompt, neg_prompt_1, neg_prompt_2, neg_prompt_3, width, height, guidance, steps, progress
)
if save_consent:
print("βœ… User consented to save. Preparing uploads...")
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
sd_filename = f"sd35ll_{}.jpg"
upscale_filename = f"sd35ll_upscale_{}.jpg"
# Upload using threading
sd_thread = threading.Thread(target=upload_to_gcs, args=(sd_hdr_bytes, sd_filename))
upscale_thread = threading.Thread(target=upload_to_gcs, args=(upscaled_hdr_bytes, upscale_filename))
sd_thread.start()
upscale_thread.start()
else:
print("ℹ️ User did not consent to save. Skipping upload.")
# Return the standard sRGB PIL image to the Gradio interface for display
return sd_image_pil, expanded_prompt
css = """
#col-container {margin: 0 auto;max-width: 640px;}
body{background-color: blue;}
"""
with gr.Blocks(theme=gr.themes.Origin(), css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # StableDiffusion 3.5 Large with UltraReal lora test")
expanded_prompt_output = gr.Textbox(label="Prompt", lines=1)
with gr.Row():
prompt = gr.Text(
label="Prompt", show_label=False, max_lines=1,
placeholder="Enter your prompt", container=False,
)
run_button_30 = gr.Button("Run30", scale=0, variant="primary")
run_button_60 = gr.Button("Run60", scale=0, variant="primary")
run_button_110 = gr.Button("Run110", scale=0, variant="primary")
# The result will display the standard PIL image, the HDR is saved/uploaded
result = gr.Image(label="Result (SDR Preview)", show_label=False, type="pil")
save_consent_checkbox = gr.Checkbox(
label="βœ… Anonymously upload result to a public gallery (as JPEG Ultra HDR)",
value=True,
info="Check this box to help us by contributing your image."
)
with gr.Accordion("Advanced Settings", open=True):
negative_prompt_1 = gr.Text(label="Negative prompt 1", max_lines=1, placeholder="Enter a negative prompt", value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition")
negative_prompt_2 = gr.Text(label="Negative prompt 2", max_lines=1, placeholder="Enter a second negative prompt", value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)")
negative_prompt_3 = gr.Text(label="Negative prompt 3", max_lines=1, placeholder="Enter a third negative prompt", value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)")
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=4.2)
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=150, step=1, value=60)
# Clicks now call the same function with a different duration parameter
run_button_30.click(
fn=lambda *args: run_inference_and_upload(45, *args),
inputs=[
prompt, negative_prompt_1, negative_prompt_2, negative_prompt_3,
width, height, guidance_scale, num_inference_steps, save_consent_checkbox
],
outputs=[result, expanded_prompt_output],
)
run_button_60.click(
fn=lambda *args: run_inference_and_upload(70, *args),
inputs=[
prompt, negative_prompt_1, negative_prompt_2, negative_prompt_3,
width, height, guidance_scale, num_inference_steps, save_consent_checkbox
],
outputs=[result, expanded_prompt_output],
)
run_button_110.click(
fn=lambda *args: run_inference_and_upload(120, *args),
inputs=[
prompt, negative_prompt_1, negative_prompt_2, negative_prompt_3,
width, height, guidance_scale, num_inference_steps, save_consent_checkbox
],
outputs=[result, expanded_prompt_output],
)
if __name__ == "__main__":
demo.launch()