Update app.py
Browse files
app.py
CHANGED
@@ -88,18 +88,14 @@ text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusi
|
|
88 |
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
89 |
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
90 |
|
91 |
-
|
92 |
-
ip_adapter_path=ipadapter_path,
|
93 |
-
image_encoder_path=image_encoder_path,
|
94 |
-
nb_token=64,
|
95 |
-
)
|
96 |
|
97 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
98 |
|
99 |
MAX_SEED = np.iinfo(np.int32).max
|
100 |
MAX_IMAGE_SIZE = 4096
|
101 |
|
102 |
-
@spaces.GPU(duration=
|
103 |
def infer(
|
104 |
prompt,
|
105 |
negative_prompt_1,
|
@@ -124,9 +120,16 @@ def infer(
|
|
124 |
image_encoder_path=None,
|
125 |
progress=gr.Progress(track_tqdm=True),
|
126 |
):
|
|
|
127 |
pipe.text_encoder=text_encoder
|
128 |
pipe.text_encoder_2=text_encoder_2
|
129 |
pipe.text_encoder_3=text_encoder_3
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
upscaler_2.to(torch.device('cpu'))
|
131 |
torch.set_float32_matmul_precision("highest")
|
132 |
seed = random.randint(0, MAX_SEED)
|
|
|
88 |
text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
|
89 |
text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
|
90 |
|
91 |
+
|
|
|
|
|
|
|
|
|
92 |
|
93 |
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
94 |
|
95 |
MAX_SEED = np.iinfo(np.int32).max
|
96 |
MAX_IMAGE_SIZE = 4096
|
97 |
|
98 |
+
@spaces.GPU(duration=80)
|
99 |
def infer(
|
100 |
prompt,
|
101 |
negative_prompt_1,
|
|
|
120 |
image_encoder_path=None,
|
121 |
progress=gr.Progress(track_tqdm=True),
|
122 |
):
|
123 |
+
|
124 |
pipe.text_encoder=text_encoder
|
125 |
pipe.text_encoder_2=text_encoder_2
|
126 |
pipe.text_encoder_3=text_encoder_3
|
127 |
+
|
128 |
+
pipe.init_ipadapter(
|
129 |
+
ip_adapter_path=ipadapter_path,
|
130 |
+
image_encoder_path=image_encoder_path,
|
131 |
+
nb_token=64,
|
132 |
+
)
|
133 |
upscaler_2.to(torch.device('cpu'))
|
134 |
torch.set_float32_matmul_precision("highest")
|
135 |
seed = random.randint(0, MAX_SEED)
|