1inkusFace commited on
Commit
af006e5
·
verified ·
1 Parent(s): a79c63d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -35
app.py CHANGED
@@ -87,7 +87,13 @@ pipe.vae=vaeX.to(device)
87
  text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
88
  text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
89
  text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
90
-
 
 
 
 
 
 
91
  upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
92
 
93
  MAX_SEED = np.iinfo(np.int32).max
@@ -151,11 +157,6 @@ def infer(
151
  sd_image_e.resize((height,width), Image.LANCZOS)
152
  else:
153
  sd_image_e = None
154
- pipe.init_ipadapter(
155
- ip_adapter_path=ipadapter_path,
156
- image_encoder_path=image_encoder_path,
157
- nb_token=64,
158
- )
159
  print('-- generating image --')
160
  sd_image = pipe(
161
  width=width,
@@ -180,38 +181,19 @@ def infer(
180
  scale_5=latent_file_5_scale,
181
  ).images[0]
182
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
183
- rv_path = f"sd35_{timestamp}.png"
184
  sd_image.save(rv_path,optimize=False,compress_level=0)
185
  upload_to_ftp(rv_path)
 
 
 
 
 
 
 
 
186
  else:
187
- print('-- generating image --')
188
- sd_image = pipe(
189
- prompt=prompt,
190
- prompt_2=enhanced_prompt_2,
191
- prompt_3=enhanced_prompt,
192
- negative_prompt=negative_prompt_1,
193
- negative_prompt_2=negative_prompt_2,
194
- negative_prompt_3=negative_prompt_3,
195
- guidance_scale=guidance_scale,
196
- num_inference_steps=num_inference_steps,
197
- width=width,
198
- height=height,
199
- generator=generator,
200
- max_sequence_length=512
201
- ).images[0]
202
- print('-- got image --')
203
- timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
204
- sd35_path = f"sd35l_{timestamp}.png"
205
- sd_image.save(sd35_path,optimize=False,compress_level=0)
206
- upload_to_ftp(sd35_path)
207
- upscaler_2.to(torch.device('cuda'))
208
- with torch.no_grad():
209
- upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
210
- print('-- got upscaled image --')
211
- downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
212
- upscale_path = f"sd35l_upscale_{seed}.png"
213
- downscale2.save(upscale_path,optimize=False,compress_level=0)
214
- upload_to_ftp(upscale_path)
215
  return sd_image, enhanced_prompt
216
 
217
  examples = [
 
87
  text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True).to(device=device, dtype=torch.bfloat16)
88
  text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True).to(device=device, dtype=torch.bfloat16)
89
  text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True).to(device=device, dtype=torch.bfloat16)
90
+
91
+ pipe.init_ipadapter(
92
+ ip_adapter_path=ipadapter_path,
93
+ image_encoder_path=image_encoder_path,
94
+ nb_token=64,
95
+ )
96
+
97
  upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
98
 
99
  MAX_SEED = np.iinfo(np.int32).max
 
157
  sd_image_e.resize((height,width), Image.LANCZOS)
158
  else:
159
  sd_image_e = None
 
 
 
 
 
160
  print('-- generating image --')
161
  sd_image = pipe(
162
  width=width,
 
181
  scale_5=latent_file_5_scale,
182
  ).images[0]
183
  timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
184
+ rv_path = f"sd35IP_{timestamp}.png"
185
  sd_image.save(rv_path,optimize=False,compress_level=0)
186
  upload_to_ftp(rv_path)
187
+ upscaler_2.to(torch.device('cuda'))
188
+ with torch.no_grad():
189
+ upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
190
+ print('-- got upscaled image --')
191
+ downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
192
+ upscale_path = f"sd35l_upscale_{seed}.png"
193
+ downscale2.save(upscale_path,optimize=False,compress_level=0)
194
+ upload_to_ftp(upscale_path)
195
  else:
196
+ print('-- at least one input image required --')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
  return sd_image, enhanced_prompt
198
 
199
  examples = [