File size: 13,061 Bytes
b2bf772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import spaces
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
import re
import paramiko
import urllib
import time
import os
import datetime

from models.transformer_sd3 import SD3Transformer2DModel
from diffusers import StableDiffusion3Pipeline
#from transformers import CLIPTextModelWithProjection, T5EncoderModel
from transformers import CLIPTokenizer, T5TokenizerFast
#from diffusers import SD3Transformer2DModel, AutoencoderKL
#from models.transformer_sd3 import SD3Transformer2DModel
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline

from image_gen_aux import UpscaleWithModel
from huggingface_hub import hf_hub_download

FTP_HOST = '1ink.us'
FTP_USER = 'ford442'
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = '1ink.us/stable_diff'

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
#torch.backends.cuda.preferred_blas_library="cublas"
#torch.backends.cuda.preferred_linalg_library="cusolver"

hftoken = os.getenv("HF_TOKEN") 

image_encoder_path = "google/siglip-so400m-patch14-384"
ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
model_path = 'ford442/stable-diffusion-3.5-large-bf16'

def upload_to_ftp(filename):
    try:
        transport = paramiko.Transport((FTP_HOST, 22))
        destination_path=FTP_DIR+filename
        transport.connect(username = FTP_USER, password = FTP_PASS)
        sftp = paramiko.SFTPClient.from_transport(transport)
        sftp.put(filename, destination_path)
        sftp.close()
        transport.close()
        print(f"Uploaded {filename} to FTP server")
    except Exception as e:
        print(f"FTP upload error: {e}")

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch_dtype = torch.bfloat16

transformer = SD3Transformer2DModel.from_pretrained(
    model_path, subfolder="transformer", torch_dtype=torch.bfloat16
)

pipe = StableDiffusion3Pipeline.from_pretrained(
    #"stabilityai  #  stable-diffusion-3.5-large",
    "ford442/stable-diffusion-3.5-large-bf16",
#    vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
     #scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
    # text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
  #  text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
  #  text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
    #tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
    #tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
    tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", use_fast=True, subfolder="tokenizer_3", token=True),
    torch_dtype=torch.bfloat16,
    #use_safetensors=False,
)

#pipe.to(device=device, dtype=torch.bfloat16)

pipe.to(device)

#pipe.to(device=device, dtype=torch.bfloat16)

upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096

@spaces.GPU(duration=90)
def infer(
    prompt,
    negative_prompt_1,
    negative_prompt_2,
    negative_prompt_3,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    latent_file,  # Add latents file input
    ip_scale,
    progress=gr.Progress(track_tqdm=True),
):
    upscaler_2.to(torch.device('cpu'))
    torch.set_float32_matmul_precision("highest")
    seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device='cuda').manual_seed(seed)
    enhanced_prompt = prompt
    enhanced_prompt_2 = prompt
    
    if latent_file:  # Check if a latent file is provided
      #  initial_latents = pipe.prepare_latents(
      #      batch_size=1,
      #      num_channels_latents=pipe.transformer.in_channels,
      #      height=pipe.transformer.config.sample_size[0],
       #     width=pipe.transformer.config.sample_size[1],
      #      dtype=pipe.transformer.dtype,
      #      device=pipe.device,
      #      generator=generator,
      #  )
        sd_image_a = Image.open(latent_file.name).convert('RGB')
        print("-- using image file and loading ip-adapter --")
        pipe.init_ipadapter(
        ip_adapter_path=ip_adapter_path, 
        image_encoder_path=image_encoder_path, 
        nb_token=64, 
        )
        print('-- generating image --')
        #with torch.no_grad():
        sd_image = pipe(
            width=width,
            height=height,
            prompt=enhanced_prompt,  # This conversion is fine
            negative_prompt=negative_prompt_1,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            generator=generator,
            clip_image=sd_image_a,
            ipadapter_scale=ip_scale,
        ).images[0]
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        rv_path = f"sd35_{timestamp}.png"
        sd_image[0].save(rv_path,optimize=False,compress_level=0)
        upload_to_ftp(rv_path)
    else:
        print('-- generating image --')
        #with torch.no_grad():
        sd_image = pipe(
            prompt=prompt,  # This conversion is fine
            prompt_2=enhanced_prompt_2,
            prompt_3=enhanced_prompt,
            negative_prompt=negative_prompt_1,
            negative_prompt_2=negative_prompt_2,
            negative_prompt_3=negative_prompt_3,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
         #   latents=None,
          #  output_type='latent',
            generator=generator,
            max_sequence_length=512
        ).images[0]
        print('-- got image --')
        timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
        #sd35_image = pipe.vae.decode(sd_image / 0.18215).sample
       # sd35_image = sd35_image.cpu().permute(0, 2, 3, 1).float().detach().numpy()
       # sd35_image = (sd35_image * 255).round().astype("uint8")
       # image_pil = Image.fromarray(sd35_image[0])
      #  sd35_path = f"sd35_{seed}.png"
       # image_pil.save(sd35_path,optimize=False,compress_level=0)
       # upload_to_ftp(sd35_path)
        sd35_path = f"sd35l_{timestamp}.png"
        sd_image.save(sd35_path,optimize=False,compress_level=0)
        upload_to_ftp(sd35_path)
        # Convert the generated image to a tensor
    #generated_image_tensor = torch.tensor([np.array(sd_image).transpose(2, 0, 1)]).to('cuda') / 255.0
    # Encode the generated image into latents
    #with torch.no_grad():
    #    generated_latents = pipe.vae.encode(generated_image_tensor.to(torch.bfloat16)).latent_dist.sample().mul_(0.18215)
    #latent_path = f"sd35m_{seed}.pt"
    # Save the latents to a .pt file
    #torch.save(generated_latents, latent_path)
    #upload_to_ftp(latent_path)
    #  pipe.unet.to('cpu')
    upscaler_2.to(torch.device('cuda'))
    with torch.no_grad():
        upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
    print('-- got upscaled image --')
    downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
    upscale_path = f"sd35l_upscale_{seed}.png"
    downscale2.save(upscale_path,optimize=False,compress_level=0)
    upload_to_ftp(upscale_path)
    return sd_image, enhanced_prompt

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
body{
  background-color: blue;
}
"""

with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Text-to-Image StableDiffusion 3.5 Large")
        expanded_prompt_output = gr.Textbox(label="Prompt", lines=5)  # Add this line
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)
        with gr.Accordion("Advanced Settings", open=True):
            latent_file = gr.File(label="Image File (optional)")  # Add latents file input
            ip_scale = gr.Slider(
                label="Image Prompt Scale",
                minimum=0.0,
                maximum=2.0,
                step=0.01,
                value=0.5,
            )            
            negative_prompt_1 = gr.Text(
                label="Negative prompt 1",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
                value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition"
            )
            negative_prompt_2 = gr.Text(
                label="Negative prompt 2",
                max_lines=1,
                placeholder="Enter a second negative prompt",
                visible=True,
                value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)"
            )
            negative_prompt_3 = gr.Text(
                label="Negative prompt 3",
                max_lines=1,
                placeholder="Enter a third negative prompt",
                visible=True,
                value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)"
            )
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,  # Replace with defaults that work for your model
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,  # Replace with defaults that work for your model
                )
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=30.0,
                    step=0.1,
                    value=4.2,  # Replace with defaults that work for your model
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=500,
                    step=1,
                    value=220,  # Replace with defaults that work for your model
                )
            gr.Examples(examples=examples, inputs=[prompt])
        gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt_1,
            negative_prompt_2,
            negative_prompt_3,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            latent_file,  # Add latent_file to the inputs
            ip_scale,
        ],
        outputs=[result, expanded_prompt_output],
        )

if __name__ == "__main__":
    demo.launch()