File size: 13,061 Bytes
b2bf772 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import spaces
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
import re
import paramiko
import urllib
import time
import os
import datetime
from models.transformer_sd3 import SD3Transformer2DModel
from diffusers import StableDiffusion3Pipeline
#from transformers import CLIPTextModelWithProjection, T5EncoderModel
from transformers import CLIPTokenizer, T5TokenizerFast
#from diffusers import SD3Transformer2DModel, AutoencoderKL
#from models.transformer_sd3 import SD3Transformer2DModel
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
from image_gen_aux import UpscaleWithModel
from huggingface_hub import hf_hub_download
FTP_HOST = '1ink.us'
FTP_USER = 'ford442'
FTP_PASS = os.getenv("FTP_PASS")
FTP_DIR = '1ink.us/stable_diff'
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
#torch.backends.cuda.preferred_blas_library="cublas"
#torch.backends.cuda.preferred_linalg_library="cusolver"
hftoken = os.getenv("HF_TOKEN")
image_encoder_path = "google/siglip-so400m-patch14-384"
ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
model_path = 'ford442/stable-diffusion-3.5-large-bf16'
def upload_to_ftp(filename):
try:
transport = paramiko.Transport((FTP_HOST, 22))
destination_path=FTP_DIR+filename
transport.connect(username = FTP_USER, password = FTP_PASS)
sftp = paramiko.SFTPClient.from_transport(transport)
sftp.put(filename, destination_path)
sftp.close()
transport.close()
print(f"Uploaded {filename} to FTP server")
except Exception as e:
print(f"FTP upload error: {e}")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
torch_dtype = torch.bfloat16
transformer = SD3Transformer2DModel.from_pretrained(
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
)
pipe = StableDiffusion3Pipeline.from_pretrained(
#"stabilityai # stable-diffusion-3.5-large",
"ford442/stable-diffusion-3.5-large-bf16",
# vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
# text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
# text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", use_fast=True, subfolder="tokenizer_3", token=True),
torch_dtype=torch.bfloat16,
#use_safetensors=False,
)
#pipe.to(device=device, dtype=torch.bfloat16)
pipe.to(device)
#pipe.to(device=device, dtype=torch.bfloat16)
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
@spaces.GPU(duration=90)
def infer(
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
latent_file, # Add latents file input
ip_scale,
progress=gr.Progress(track_tqdm=True),
):
upscaler_2.to(torch.device('cpu'))
torch.set_float32_matmul_precision("highest")
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device='cuda').manual_seed(seed)
enhanced_prompt = prompt
enhanced_prompt_2 = prompt
if latent_file: # Check if a latent file is provided
# initial_latents = pipe.prepare_latents(
# batch_size=1,
# num_channels_latents=pipe.transformer.in_channels,
# height=pipe.transformer.config.sample_size[0],
# width=pipe.transformer.config.sample_size[1],
# dtype=pipe.transformer.dtype,
# device=pipe.device,
# generator=generator,
# )
sd_image_a = Image.open(latent_file.name).convert('RGB')
print("-- using image file and loading ip-adapter --")
pipe.init_ipadapter(
ip_adapter_path=ip_adapter_path,
image_encoder_path=image_encoder_path,
nb_token=64,
)
print('-- generating image --')
#with torch.no_grad():
sd_image = pipe(
width=width,
height=height,
prompt=enhanced_prompt, # This conversion is fine
negative_prompt=negative_prompt_1,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
clip_image=sd_image_a,
ipadapter_scale=ip_scale,
).images[0]
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
rv_path = f"sd35_{timestamp}.png"
sd_image[0].save(rv_path,optimize=False,compress_level=0)
upload_to_ftp(rv_path)
else:
print('-- generating image --')
#with torch.no_grad():
sd_image = pipe(
prompt=prompt, # This conversion is fine
prompt_2=enhanced_prompt_2,
prompt_3=enhanced_prompt,
negative_prompt=negative_prompt_1,
negative_prompt_2=negative_prompt_2,
negative_prompt_3=negative_prompt_3,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
# latents=None,
# output_type='latent',
generator=generator,
max_sequence_length=512
).images[0]
print('-- got image --')
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
#sd35_image = pipe.vae.decode(sd_image / 0.18215).sample
# sd35_image = sd35_image.cpu().permute(0, 2, 3, 1).float().detach().numpy()
# sd35_image = (sd35_image * 255).round().astype("uint8")
# image_pil = Image.fromarray(sd35_image[0])
# sd35_path = f"sd35_{seed}.png"
# image_pil.save(sd35_path,optimize=False,compress_level=0)
# upload_to_ftp(sd35_path)
sd35_path = f"sd35l_{timestamp}.png"
sd_image.save(sd35_path,optimize=False,compress_level=0)
upload_to_ftp(sd35_path)
# Convert the generated image to a tensor
#generated_image_tensor = torch.tensor([np.array(sd_image).transpose(2, 0, 1)]).to('cuda') / 255.0
# Encode the generated image into latents
#with torch.no_grad():
# generated_latents = pipe.vae.encode(generated_image_tensor.to(torch.bfloat16)).latent_dist.sample().mul_(0.18215)
#latent_path = f"sd35m_{seed}.pt"
# Save the latents to a .pt file
#torch.save(generated_latents, latent_path)
#upload_to_ftp(latent_path)
# pipe.unet.to('cpu')
upscaler_2.to(torch.device('cuda'))
with torch.no_grad():
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
print('-- got upscaled image --')
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
upscale_path = f"sd35l_upscale_{seed}.png"
downscale2.save(upscale_path,optimize=False,compress_level=0)
upload_to_ftp(upscale_path)
return sd_image, enhanced_prompt
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
body{
background-color: blue;
}
"""
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Text-to-Image StableDiffusion 3.5 Large")
expanded_prompt_output = gr.Textbox(label="Prompt", lines=5) # Add this line
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=True):
latent_file = gr.File(label="Image File (optional)") # Add latents file input
ip_scale = gr.Slider(
label="Image Prompt Scale",
minimum=0.0,
maximum=2.0,
step=0.01,
value=0.5,
)
negative_prompt_1 = gr.Text(
label="Negative prompt 1",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition"
)
negative_prompt_2 = gr.Text(
label="Negative prompt 2",
max_lines=1,
placeholder="Enter a second negative prompt",
visible=True,
value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)"
)
negative_prompt_3 = gr.Text(
label="Negative prompt 3",
max_lines=1,
placeholder="Enter a third negative prompt",
visible=True,
value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)"
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768, # Replace with defaults that work for your model
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=30.0,
step=0.1,
value=4.2, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=500,
step=1,
value=220, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt_1,
negative_prompt_2,
negative_prompt_3,
width,
height,
guidance_scale,
num_inference_steps,
latent_file, # Add latent_file to the inputs
ip_scale,
],
outputs=[result, expanded_prompt_output],
)
if __name__ == "__main__":
demo.launch() |