Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import re
|
8 |
+
import paramiko
|
9 |
+
import urllib
|
10 |
+
import time
|
11 |
+
import os
|
12 |
+
import datetime
|
13 |
+
|
14 |
+
from models.transformer_sd3 import SD3Transformer2DModel
|
15 |
+
from diffusers import StableDiffusion3Pipeline
|
16 |
+
#from transformers import CLIPTextModelWithProjection, T5EncoderModel
|
17 |
+
from transformers import CLIPTokenizer, T5TokenizerFast
|
18 |
+
#from diffusers import SD3Transformer2DModel, AutoencoderKL
|
19 |
+
#from models.transformer_sd3 import SD3Transformer2DModel
|
20 |
+
from pipeline_stable_diffusion_3_ipa import StableDiffusion3Pipeline
|
21 |
+
|
22 |
+
from image_gen_aux import UpscaleWithModel
|
23 |
+
from huggingface_hub import hf_hub_download
|
24 |
+
|
25 |
+
FTP_HOST = '1ink.us'
|
26 |
+
FTP_USER = 'ford442'
|
27 |
+
FTP_PASS = os.getenv("FTP_PASS")
|
28 |
+
FTP_DIR = '1ink.us/stable_diff'
|
29 |
+
|
30 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
31 |
+
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
|
32 |
+
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
33 |
+
torch.backends.cudnn.allow_tf32 = False
|
34 |
+
torch.backends.cudnn.deterministic = False
|
35 |
+
torch.backends.cudnn.benchmark = False
|
36 |
+
#torch.backends.cuda.preferred_blas_library="cublas"
|
37 |
+
#torch.backends.cuda.preferred_linalg_library="cusolver"
|
38 |
+
|
39 |
+
hftoken = os.getenv("HF_TOKEN")
|
40 |
+
|
41 |
+
image_encoder_path = "google/siglip-so400m-patch14-384"
|
42 |
+
ipadapter_path = hf_hub_download(repo_id="InstantX/SD3.5-Large-IP-Adapter", filename="ip-adapter.bin")
|
43 |
+
model_path = 'ford442/stable-diffusion-3.5-large-bf16'
|
44 |
+
|
45 |
+
def upload_to_ftp(filename):
|
46 |
+
try:
|
47 |
+
transport = paramiko.Transport((FTP_HOST, 22))
|
48 |
+
destination_path=FTP_DIR+filename
|
49 |
+
transport.connect(username = FTP_USER, password = FTP_PASS)
|
50 |
+
sftp = paramiko.SFTPClient.from_transport(transport)
|
51 |
+
sftp.put(filename, destination_path)
|
52 |
+
sftp.close()
|
53 |
+
transport.close()
|
54 |
+
print(f"Uploaded {filename} to FTP server")
|
55 |
+
except Exception as e:
|
56 |
+
print(f"FTP upload error: {e}")
|
57 |
+
|
58 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
59 |
+
torch_dtype = torch.bfloat16
|
60 |
+
|
61 |
+
transformer = SD3Transformer2DModel.from_pretrained(
|
62 |
+
model_path, subfolder="transformer", torch_dtype=torch.bfloat16
|
63 |
+
)
|
64 |
+
|
65 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(
|
66 |
+
#"stabilityai # stable-diffusion-3.5-large",
|
67 |
+
"ford442/stable-diffusion-3.5-large-bf16",
|
68 |
+
# vae=AutoencoderKL.from_pretrained("ford442/stable-diffusion-3.5-large-fp32", use_safetensors=True, subfolder='vae',token=True),
|
69 |
+
#scheduler = FlowMatchHeunDiscreteScheduler.from_pretrained('ford442/stable-diffusion-3.5-large-bf16', subfolder='scheduler',token=True),
|
70 |
+
# text_encoder=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder', token=True),
|
71 |
+
# text_encoder_2=CLIPTextModelWithProjection.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_2',token=True),
|
72 |
+
# text_encoder_3=T5EncoderModel.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", subfolder='text_encoder_3',token=True),
|
73 |
+
#tokenizer=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer", token=True),
|
74 |
+
#tokenizer_2=CLIPTokenizer.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", add_prefix_space=True, subfolder="tokenizer_2", token=True),
|
75 |
+
tokenizer_3=T5TokenizerFast.from_pretrained("ford442/stable-diffusion-3.5-large-bf16", use_fast=True, subfolder="tokenizer_3", token=True),
|
76 |
+
torch_dtype=torch.bfloat16,
|
77 |
+
#use_safetensors=False,
|
78 |
+
)
|
79 |
+
|
80 |
+
#pipe.to(device=device, dtype=torch.bfloat16)
|
81 |
+
|
82 |
+
pipe.to(device)
|
83 |
+
|
84 |
+
#pipe.to(device=device, dtype=torch.bfloat16)
|
85 |
+
|
86 |
+
upscaler_2 = UpscaleWithModel.from_pretrained("Kim2091/ClearRealityV1").to(torch.device("cuda:0"))
|
87 |
+
|
88 |
+
MAX_SEED = np.iinfo(np.int32).max
|
89 |
+
MAX_IMAGE_SIZE = 4096
|
90 |
+
|
91 |
+
@spaces.GPU(duration=90)
|
92 |
+
def infer(
|
93 |
+
prompt,
|
94 |
+
negative_prompt_1,
|
95 |
+
negative_prompt_2,
|
96 |
+
negative_prompt_3,
|
97 |
+
width,
|
98 |
+
height,
|
99 |
+
guidance_scale,
|
100 |
+
num_inference_steps,
|
101 |
+
latent_file, # Add latents file input
|
102 |
+
ip_scale,
|
103 |
+
progress=gr.Progress(track_tqdm=True),
|
104 |
+
):
|
105 |
+
upscaler_2.to(torch.device('cpu'))
|
106 |
+
torch.set_float32_matmul_precision("highest")
|
107 |
+
seed = random.randint(0, MAX_SEED)
|
108 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
109 |
+
enhanced_prompt = prompt
|
110 |
+
enhanced_prompt_2 = prompt
|
111 |
+
|
112 |
+
if latent_file: # Check if a latent file is provided
|
113 |
+
# initial_latents = pipe.prepare_latents(
|
114 |
+
# batch_size=1,
|
115 |
+
# num_channels_latents=pipe.transformer.in_channels,
|
116 |
+
# height=pipe.transformer.config.sample_size[0],
|
117 |
+
# width=pipe.transformer.config.sample_size[1],
|
118 |
+
# dtype=pipe.transformer.dtype,
|
119 |
+
# device=pipe.device,
|
120 |
+
# generator=generator,
|
121 |
+
# )
|
122 |
+
sd_image_a = Image.open(latent_file.name).convert('RGB')
|
123 |
+
print("-- using image file and loading ip-adapter --")
|
124 |
+
pipe.init_ipadapter(
|
125 |
+
ip_adapter_path=ip_adapter_path,
|
126 |
+
image_encoder_path=image_encoder_path,
|
127 |
+
nb_token=64,
|
128 |
+
)
|
129 |
+
print('-- generating image --')
|
130 |
+
#with torch.no_grad():
|
131 |
+
sd_image = pipe(
|
132 |
+
width=width,
|
133 |
+
height=height,
|
134 |
+
prompt=enhanced_prompt, # This conversion is fine
|
135 |
+
negative_prompt=negative_prompt_1,
|
136 |
+
num_inference_steps=num_inference_steps,
|
137 |
+
guidance_scale=guidance_scale,
|
138 |
+
generator=generator,
|
139 |
+
clip_image=sd_image_a,
|
140 |
+
ipadapter_scale=ip_scale,
|
141 |
+
).images[0]
|
142 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
143 |
+
rv_path = f"sd35_{timestamp}.png"
|
144 |
+
sd_image[0].save(rv_path,optimize=False,compress_level=0)
|
145 |
+
upload_to_ftp(rv_path)
|
146 |
+
else:
|
147 |
+
print('-- generating image --')
|
148 |
+
#with torch.no_grad():
|
149 |
+
sd_image = pipe(
|
150 |
+
prompt=prompt, # This conversion is fine
|
151 |
+
prompt_2=enhanced_prompt_2,
|
152 |
+
prompt_3=enhanced_prompt,
|
153 |
+
negative_prompt=negative_prompt_1,
|
154 |
+
negative_prompt_2=negative_prompt_2,
|
155 |
+
negative_prompt_3=negative_prompt_3,
|
156 |
+
guidance_scale=guidance_scale,
|
157 |
+
num_inference_steps=num_inference_steps,
|
158 |
+
width=width,
|
159 |
+
height=height,
|
160 |
+
# latents=None,
|
161 |
+
# output_type='latent',
|
162 |
+
generator=generator,
|
163 |
+
max_sequence_length=512
|
164 |
+
).images[0]
|
165 |
+
print('-- got image --')
|
166 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
167 |
+
#sd35_image = pipe.vae.decode(sd_image / 0.18215).sample
|
168 |
+
# sd35_image = sd35_image.cpu().permute(0, 2, 3, 1).float().detach().numpy()
|
169 |
+
# sd35_image = (sd35_image * 255).round().astype("uint8")
|
170 |
+
# image_pil = Image.fromarray(sd35_image[0])
|
171 |
+
# sd35_path = f"sd35_{seed}.png"
|
172 |
+
# image_pil.save(sd35_path,optimize=False,compress_level=0)
|
173 |
+
# upload_to_ftp(sd35_path)
|
174 |
+
sd35_path = f"sd35l_{timestamp}.png"
|
175 |
+
sd_image.save(sd35_path,optimize=False,compress_level=0)
|
176 |
+
upload_to_ftp(sd35_path)
|
177 |
+
# Convert the generated image to a tensor
|
178 |
+
#generated_image_tensor = torch.tensor([np.array(sd_image).transpose(2, 0, 1)]).to('cuda') / 255.0
|
179 |
+
# Encode the generated image into latents
|
180 |
+
#with torch.no_grad():
|
181 |
+
# generated_latents = pipe.vae.encode(generated_image_tensor.to(torch.bfloat16)).latent_dist.sample().mul_(0.18215)
|
182 |
+
#latent_path = f"sd35m_{seed}.pt"
|
183 |
+
# Save the latents to a .pt file
|
184 |
+
#torch.save(generated_latents, latent_path)
|
185 |
+
#upload_to_ftp(latent_path)
|
186 |
+
# pipe.unet.to('cpu')
|
187 |
+
upscaler_2.to(torch.device('cuda'))
|
188 |
+
with torch.no_grad():
|
189 |
+
upscale2 = upscaler_2(sd_image, tiling=True, tile_width=256, tile_height=256)
|
190 |
+
print('-- got upscaled image --')
|
191 |
+
downscale2 = upscale2.resize((upscale2.width // 4, upscale2.height // 4),Image.LANCZOS)
|
192 |
+
upscale_path = f"sd35l_upscale_{seed}.png"
|
193 |
+
downscale2.save(upscale_path,optimize=False,compress_level=0)
|
194 |
+
upload_to_ftp(upscale_path)
|
195 |
+
return sd_image, enhanced_prompt
|
196 |
+
|
197 |
+
examples = [
|
198 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
199 |
+
"An astronaut riding a green horse",
|
200 |
+
"A delicious ceviche cheesecake slice",
|
201 |
+
]
|
202 |
+
|
203 |
+
css = """
|
204 |
+
#col-container {
|
205 |
+
margin: 0 auto;
|
206 |
+
max-width: 640px;
|
207 |
+
}
|
208 |
+
body{
|
209 |
+
background-color: blue;
|
210 |
+
}
|
211 |
+
"""
|
212 |
+
|
213 |
+
with gr.Blocks(theme=gr.themes.Origin(),css=css) as demo:
|
214 |
+
with gr.Column(elem_id="col-container"):
|
215 |
+
gr.Markdown(" # Text-to-Text-to-Image StableDiffusion 3.5 Large")
|
216 |
+
expanded_prompt_output = gr.Textbox(label="Prompt", lines=5) # Add this line
|
217 |
+
with gr.Row():
|
218 |
+
prompt = gr.Text(
|
219 |
+
label="Prompt",
|
220 |
+
show_label=False,
|
221 |
+
max_lines=1,
|
222 |
+
placeholder="Enter your prompt",
|
223 |
+
container=False,
|
224 |
+
)
|
225 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
226 |
+
result = gr.Image(label="Result", show_label=False)
|
227 |
+
with gr.Accordion("Advanced Settings", open=True):
|
228 |
+
latent_file = gr.File(label="Image File (optional)") # Add latents file input
|
229 |
+
ip_scale = gr.Slider(
|
230 |
+
label="Image Prompt Scale",
|
231 |
+
minimum=0.0,
|
232 |
+
maximum=2.0,
|
233 |
+
step=0.01,
|
234 |
+
value=0.5,
|
235 |
+
)
|
236 |
+
negative_prompt_1 = gr.Text(
|
237 |
+
label="Negative prompt 1",
|
238 |
+
max_lines=1,
|
239 |
+
placeholder="Enter a negative prompt",
|
240 |
+
visible=True,
|
241 |
+
value="bad anatomy, poorly drawn hands, distorted face, blurry, out of frame, low resolution, grainy, pixelated, disfigured, mutated, extra limbs, bad composition"
|
242 |
+
)
|
243 |
+
negative_prompt_2 = gr.Text(
|
244 |
+
label="Negative prompt 2",
|
245 |
+
max_lines=1,
|
246 |
+
placeholder="Enter a second negative prompt",
|
247 |
+
visible=True,
|
248 |
+
value="unrealistic, cartoon, anime, sketch, painting, drawing, illustration, graphic, digital art, render, 3d, blurry, deformed, disfigured, poorly drawn, bad anatomy, mutated, extra limbs, ugly, out of frame, bad composition, low resolution, grainy, pixelated, noisy, oversaturated, undersaturated, (worst quality, low quality:1.3), (bad hands, missing fingers:1.2)"
|
249 |
+
)
|
250 |
+
negative_prompt_3 = gr.Text(
|
251 |
+
label="Negative prompt 3",
|
252 |
+
max_lines=1,
|
253 |
+
placeholder="Enter a third negative prompt",
|
254 |
+
visible=True,
|
255 |
+
value="(worst quality, low quality:1.3), (bad anatomy, bad hands, missing fingers, extra digit, fewer digits:1.2), (blurry:1.1), cropped, watermark, text, signature, logo, jpeg artifacts, (ugly, deformed, disfigured:1.2), (poorly drawn:1.2), mutated, extra limbs, (bad proportions, gross proportions:1.2), (malformed limbs, missing arms, missing legs, extra arms, extra legs:1.2), (fused fingers, too many fingers, long neck:1.2), (unnatural body, unnatural pose:1.1), out of frame, (bad composition, poorly composed:1.1), (oversaturated, undersaturated:1.1), (grainy, pixelated:1.1), (low resolution, noisy:1.1), (unrealistic, distorted:1.1), (extra fingers, mutated hands, poorly drawn hands, bad hands:1.3), (missing fingers:1.3)"
|
256 |
+
)
|
257 |
+
with gr.Row():
|
258 |
+
width = gr.Slider(
|
259 |
+
label="Width",
|
260 |
+
minimum=256,
|
261 |
+
maximum=MAX_IMAGE_SIZE,
|
262 |
+
step=32,
|
263 |
+
value=768, # Replace with defaults that work for your model
|
264 |
+
)
|
265 |
+
height = gr.Slider(
|
266 |
+
label="Height",
|
267 |
+
minimum=256,
|
268 |
+
maximum=MAX_IMAGE_SIZE,
|
269 |
+
step=32,
|
270 |
+
value=768, # Replace with defaults that work for your model
|
271 |
+
)
|
272 |
+
guidance_scale = gr.Slider(
|
273 |
+
label="Guidance scale",
|
274 |
+
minimum=0.0,
|
275 |
+
maximum=30.0,
|
276 |
+
step=0.1,
|
277 |
+
value=4.2, # Replace with defaults that work for your model
|
278 |
+
)
|
279 |
+
num_inference_steps = gr.Slider(
|
280 |
+
label="Number of inference steps",
|
281 |
+
minimum=1,
|
282 |
+
maximum=500,
|
283 |
+
step=1,
|
284 |
+
value=220, # Replace with defaults that work for your model
|
285 |
+
)
|
286 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
287 |
+
gr.on(
|
288 |
+
triggers=[run_button.click, prompt.submit],
|
289 |
+
fn=infer,
|
290 |
+
inputs=[
|
291 |
+
prompt,
|
292 |
+
negative_prompt_1,
|
293 |
+
negative_prompt_2,
|
294 |
+
negative_prompt_3,
|
295 |
+
width,
|
296 |
+
height,
|
297 |
+
guidance_scale,
|
298 |
+
num_inference_steps,
|
299 |
+
latent_file, # Add latent_file to the inputs
|
300 |
+
ip_scale,
|
301 |
+
],
|
302 |
+
outputs=[result, expanded_prompt_output],
|
303 |
+
)
|
304 |
+
|
305 |
+
if __name__ == "__main__":
|
306 |
+
demo.launch()
|