1inkusFace commited on
Commit
a532195
·
verified ·
1 Parent(s): b435b9c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +121 -2
app.py CHANGED
@@ -195,6 +195,7 @@ def generate_30(
195
 
196
  pooled_prompt_embeds_list=[]
197
  prompt_embeds_list=[]
 
198
  text_inputs1 = pipe.tokenizer(
199
  prompt,
200
  padding="max_length",
@@ -202,7 +203,9 @@ def generate_30(
202
  truncation=True,
203
  return_tensors="pt",
204
  )
 
205
  text_input_ids1 = text_inputs1.input_ids
 
206
  text_inputs2 = pipe.tokenizer(
207
  prompt2,
208
  padding="max_length",
@@ -210,8 +213,28 @@ def generate_30(
210
  truncation=True,
211
  return_tensors="pt",
212
  )
 
213
  text_input_ids2 = text_inputs2.input_ids
214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215
  # 2. Encode with the two text encoders
216
  prompt_embeds_a = pipe.text_encoder(text_input_ids1.to(torch.device('cuda')), output_hidden_states=True)
217
  pooled_prompt_embeds_a = prompt_embeds_a[0] # Pooled output from encoder 1
@@ -221,6 +244,14 @@ def generate_30(
221
  pooled_prompt_embeds_b = prompt_embeds_b[0] # Pooled output from encoder 2
222
  prompt_embeds_b = prompt_embeds_b.hidden_states[-2] # Penultimate hidden state from encoder 2
223
 
 
 
 
 
 
 
 
 
224
  # 3. Concatenate the embeddings
225
  prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
226
  print('catted shape: ', prompt_embeds.shape)
@@ -231,6 +262,15 @@ def generate_30(
231
  pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0)
232
  print('pooled averaged shape: ', pooled_prompt_embeds.shape)
233
 
 
 
 
 
 
 
 
 
 
234
  options = {
235
  #"prompt": prompt,
236
  "prompt_embeds": prompt_embeds,
@@ -279,6 +319,7 @@ def generate_60(
279
 
280
  pooled_prompt_embeds_list=[]
281
  prompt_embeds_list=[]
 
282
  text_inputs1 = pipe.tokenizer(
283
  prompt,
284
  padding="max_length",
@@ -286,7 +327,9 @@ def generate_60(
286
  truncation=True,
287
  return_tensors="pt",
288
  )
 
289
  text_input_ids1 = text_inputs1.input_ids
 
290
  text_inputs2 = pipe.tokenizer(
291
  prompt2,
292
  padding="max_length",
@@ -294,8 +337,28 @@ def generate_60(
294
  truncation=True,
295
  return_tensors="pt",
296
  )
 
297
  text_input_ids2 = text_inputs2.input_ids
298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299
  # 2. Encode with the two text encoders
300
  prompt_embeds_a = pipe.text_encoder(text_input_ids1.to(torch.device('cuda')), output_hidden_states=True)
301
  pooled_prompt_embeds_a = prompt_embeds_a[0] # Pooled output from encoder 1
@@ -305,6 +368,14 @@ def generate_60(
305
  pooled_prompt_embeds_b = prompt_embeds_b[0] # Pooled output from encoder 2
306
  prompt_embeds_b = prompt_embeds_b.hidden_states[-2] # Penultimate hidden state from encoder 2
307
 
 
 
 
 
 
 
 
 
308
  # 3. Concatenate the embeddings
309
  prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
310
  print('catted shape: ', prompt_embeds.shape)
@@ -315,7 +386,15 @@ def generate_60(
315
  pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0)
316
  print('pooled averaged shape: ', pooled_prompt_embeds.shape)
317
 
318
-
 
 
 
 
 
 
 
 
319
  options = {
320
  #"prompt": prompt,
321
  "prompt_embeds": prompt_embeds,
@@ -364,6 +443,7 @@ def generate_90(
364
 
365
  pooled_prompt_embeds_list=[]
366
  prompt_embeds_list=[]
 
367
  text_inputs1 = pipe.tokenizer(
368
  prompt,
369
  padding="max_length",
@@ -371,7 +451,9 @@ def generate_90(
371
  truncation=True,
372
  return_tensors="pt",
373
  )
 
374
  text_input_ids1 = text_inputs1.input_ids
 
375
  text_inputs2 = pipe.tokenizer(
376
  prompt2,
377
  padding="max_length",
@@ -379,8 +461,28 @@ def generate_90(
379
  truncation=True,
380
  return_tensors="pt",
381
  )
 
382
  text_input_ids2 = text_inputs2.input_ids
383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
384
  # 2. Encode with the two text encoders
385
  prompt_embeds_a = pipe.text_encoder(text_input_ids1.to(torch.device('cuda')), output_hidden_states=True)
386
  pooled_prompt_embeds_a = prompt_embeds_a[0] # Pooled output from encoder 1
@@ -389,7 +491,15 @@ def generate_90(
389
  prompt_embeds_b = pipe.text_encoder(text_input_ids2.to(torch.device('cuda')), output_hidden_states=True)
390
  pooled_prompt_embeds_b = prompt_embeds_b[0] # Pooled output from encoder 2
391
  prompt_embeds_b = prompt_embeds_b.hidden_states[-2] # Penultimate hidden state from encoder 2
392
-
 
 
 
 
 
 
 
 
393
  # 3. Concatenate the embeddings
394
  prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
395
  print('catted shape: ', prompt_embeds.shape)
@@ -400,6 +510,15 @@ def generate_90(
400
  pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0)
401
  print('pooled averaged shape: ', pooled_prompt_embeds.shape)
402
 
 
 
 
 
 
 
 
 
 
403
  options = {
404
  #"prompt": prompt,
405
  "prompt_embeds": prompt_embeds,
 
195
 
196
  pooled_prompt_embeds_list=[]
197
  prompt_embeds_list=[]
198
+
199
  text_inputs1 = pipe.tokenizer(
200
  prompt,
201
  padding="max_length",
 
203
  truncation=True,
204
  return_tensors="pt",
205
  )
206
+
207
  text_input_ids1 = text_inputs1.input_ids
208
+
209
  text_inputs2 = pipe.tokenizer(
210
  prompt2,
211
  padding="max_length",
 
213
  truncation=True,
214
  return_tensors="pt",
215
  )
216
+
217
  text_input_ids2 = text_inputs2.input_ids
218
 
219
+ text_inputs1b = pipe.tokenizer_2(
220
+ prompt,
221
+ padding="max_length",
222
+ max_length=77,
223
+ truncation=True,
224
+ return_tensors="pt",
225
+ )
226
+
227
+ text_input_ids1b = text_inputs1b.input_ids
228
+
229
+ text_inputs2b = pipe.tokenizer_2(
230
+ prompt2,
231
+ padding="max_length",
232
+ max_length=77,
233
+ truncation=True,
234
+ return_tensors="pt",
235
+ )
236
+ text_input_ids2b = text_inputs2b.input_ids
237
+
238
  # 2. Encode with the two text encoders
239
  prompt_embeds_a = pipe.text_encoder(text_input_ids1.to(torch.device('cuda')), output_hidden_states=True)
240
  pooled_prompt_embeds_a = prompt_embeds_a[0] # Pooled output from encoder 1
 
244
  pooled_prompt_embeds_b = prompt_embeds_b[0] # Pooled output from encoder 2
245
  prompt_embeds_b = prompt_embeds_b.hidden_states[-2] # Penultimate hidden state from encoder 2
246
 
247
+ prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
248
+ pooled_prompt_embeds_a2 = prompt_embeds_a2[0] # Pooled output from encoder 1
249
+ prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2] # Penultimate hidden state from encoder 1
250
+ print('encoder shape: ', prompt_embeds_a2.shape)
251
+ prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
252
+ pooled_prompt_embeds_b2 = prompt_embeds_b2[0] # Pooled output from encoder 2
253
+ prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2] # Penultimate hidden state from encoder 2
254
+
255
  # 3. Concatenate the embeddings
256
  prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
257
  print('catted shape: ', prompt_embeds.shape)
 
262
  pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0)
263
  print('pooled averaged shape: ', pooled_prompt_embeds.shape)
264
 
265
+ # 3. Concatenate the text_encoder_2 embeddings
266
+ prompt_embeds2 = torch.cat([prompt_embeds_a2, prompt_embeds_b2])
267
+ print('catted shape2: ', prompt_embeds.shape)
268
+ pooled_prompt_embeds2 = torch.cat([pooled_prompt_embeds_a2, pooled_prompt_embeds_b2])
269
+ pooled_prompt_embeds2 = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2], dim=2)
270
+ # 4. (Optional) Average the pooled embeddings
271
+ pooled_prompt_embeds = torch.mean(pooled_prompt_embeds2,dim=0)
272
+ print('pooled averaged shape: ', pooled_prompt_embeds.shape)
273
+
274
  options = {
275
  #"prompt": prompt,
276
  "prompt_embeds": prompt_embeds,
 
319
 
320
  pooled_prompt_embeds_list=[]
321
  prompt_embeds_list=[]
322
+
323
  text_inputs1 = pipe.tokenizer(
324
  prompt,
325
  padding="max_length",
 
327
  truncation=True,
328
  return_tensors="pt",
329
  )
330
+
331
  text_input_ids1 = text_inputs1.input_ids
332
+
333
  text_inputs2 = pipe.tokenizer(
334
  prompt2,
335
  padding="max_length",
 
337
  truncation=True,
338
  return_tensors="pt",
339
  )
340
+
341
  text_input_ids2 = text_inputs2.input_ids
342
 
343
+ text_inputs1b = pipe.tokenizer_2(
344
+ prompt,
345
+ padding="max_length",
346
+ max_length=77,
347
+ truncation=True,
348
+ return_tensors="pt",
349
+ )
350
+
351
+ text_input_ids1b = text_inputs1b.input_ids
352
+
353
+ text_inputs2b = pipe.tokenizer_2(
354
+ prompt2,
355
+ padding="max_length",
356
+ max_length=77,
357
+ truncation=True,
358
+ return_tensors="pt",
359
+ )
360
+ text_input_ids2b = text_inputs2b.input_ids
361
+
362
  # 2. Encode with the two text encoders
363
  prompt_embeds_a = pipe.text_encoder(text_input_ids1.to(torch.device('cuda')), output_hidden_states=True)
364
  pooled_prompt_embeds_a = prompt_embeds_a[0] # Pooled output from encoder 1
 
368
  pooled_prompt_embeds_b = prompt_embeds_b[0] # Pooled output from encoder 2
369
  prompt_embeds_b = prompt_embeds_b.hidden_states[-2] # Penultimate hidden state from encoder 2
370
 
371
+ prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
372
+ pooled_prompt_embeds_a2 = prompt_embeds_a2[0] # Pooled output from encoder 1
373
+ prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2] # Penultimate hidden state from encoder 1
374
+ print('encoder shape: ', prompt_embeds_a2.shape)
375
+ prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
376
+ pooled_prompt_embeds_b2 = prompt_embeds_b2[0] # Pooled output from encoder 2
377
+ prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2] # Penultimate hidden state from encoder 2
378
+
379
  # 3. Concatenate the embeddings
380
  prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
381
  print('catted shape: ', prompt_embeds.shape)
 
386
  pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0)
387
  print('pooled averaged shape: ', pooled_prompt_embeds.shape)
388
 
389
+ # 3. Concatenate the text_encoder_2 embeddings
390
+ prompt_embeds2 = torch.cat([prompt_embeds_a2, prompt_embeds_b2])
391
+ print('catted shape2: ', prompt_embeds.shape)
392
+ pooled_prompt_embeds2 = torch.cat([pooled_prompt_embeds_a2, pooled_prompt_embeds_b2])
393
+ pooled_prompt_embeds2 = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2], dim=2)
394
+ # 4. (Optional) Average the pooled embeddings
395
+ pooled_prompt_embeds = torch.mean(pooled_prompt_embeds2,dim=0)
396
+ print('pooled averaged shape: ', pooled_prompt_embeds.shape)
397
+
398
  options = {
399
  #"prompt": prompt,
400
  "prompt_embeds": prompt_embeds,
 
443
 
444
  pooled_prompt_embeds_list=[]
445
  prompt_embeds_list=[]
446
+
447
  text_inputs1 = pipe.tokenizer(
448
  prompt,
449
  padding="max_length",
 
451
  truncation=True,
452
  return_tensors="pt",
453
  )
454
+
455
  text_input_ids1 = text_inputs1.input_ids
456
+
457
  text_inputs2 = pipe.tokenizer(
458
  prompt2,
459
  padding="max_length",
 
461
  truncation=True,
462
  return_tensors="pt",
463
  )
464
+
465
  text_input_ids2 = text_inputs2.input_ids
466
 
467
+ text_inputs1b = pipe.tokenizer_2(
468
+ prompt,
469
+ padding="max_length",
470
+ max_length=77,
471
+ truncation=True,
472
+ return_tensors="pt",
473
+ )
474
+
475
+ text_input_ids1b = text_inputs1b.input_ids
476
+
477
+ text_inputs2b = pipe.tokenizer_2(
478
+ prompt2,
479
+ padding="max_length",
480
+ max_length=77,
481
+ truncation=True,
482
+ return_tensors="pt",
483
+ )
484
+ text_input_ids2b = text_inputs2b.input_ids
485
+
486
  # 2. Encode with the two text encoders
487
  prompt_embeds_a = pipe.text_encoder(text_input_ids1.to(torch.device('cuda')), output_hidden_states=True)
488
  pooled_prompt_embeds_a = prompt_embeds_a[0] # Pooled output from encoder 1
 
491
  prompt_embeds_b = pipe.text_encoder(text_input_ids2.to(torch.device('cuda')), output_hidden_states=True)
492
  pooled_prompt_embeds_b = prompt_embeds_b[0] # Pooled output from encoder 2
493
  prompt_embeds_b = prompt_embeds_b.hidden_states[-2] # Penultimate hidden state from encoder 2
494
+
495
+ prompt_embeds_a2 = pipe.text_encoder_2(text_input_ids1b.to(torch.device('cuda')), output_hidden_states=True)
496
+ pooled_prompt_embeds_a2 = prompt_embeds_a2[0] # Pooled output from encoder 1
497
+ prompt_embeds_a2 = prompt_embeds_a2.hidden_states[-2] # Penultimate hidden state from encoder 1
498
+ print('encoder shape: ', prompt_embeds_a2.shape)
499
+ prompt_embeds_b2 = pipe.text_encoder_2(text_input_ids2b.to(torch.device('cuda')), output_hidden_states=True)
500
+ pooled_prompt_embeds_b2 = prompt_embeds_b2[0] # Pooled output from encoder 2
501
+ prompt_embeds_b2 = prompt_embeds_b2.hidden_states[-2] # Penultimate hidden state from encoder 2
502
+
503
  # 3. Concatenate the embeddings
504
  prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
505
  print('catted shape: ', prompt_embeds.shape)
 
510
  pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0)
511
  print('pooled averaged shape: ', pooled_prompt_embeds.shape)
512
 
513
+ # 3. Concatenate the text_encoder_2 embeddings
514
+ prompt_embeds2 = torch.cat([prompt_embeds_a2, prompt_embeds_b2])
515
+ print('catted shape2: ', prompt_embeds.shape)
516
+ pooled_prompt_embeds2 = torch.cat([pooled_prompt_embeds_a2, pooled_prompt_embeds_b2])
517
+ pooled_prompt_embeds2 = torch.cat([pooled_prompt_embeds, pooled_prompt_embeds2], dim=2)
518
+ # 4. (Optional) Average the pooled embeddings
519
+ pooled_prompt_embeds = torch.mean(pooled_prompt_embeds2,dim=0)
520
+ print('pooled averaged shape: ', pooled_prompt_embeds.shape)
521
+
522
  options = {
523
  #"prompt": prompt,
524
  "prompt_embeds": prompt_embeds,