Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -228,7 +228,8 @@ def generate_30(
|
|
228 |
# 4. (Optional) Average the pooled embeddings
|
229 |
prompt_embeds = torch.mean(prompt_embeds,dim=0,keepdim=True)
|
230 |
print('averaged shape: ', prompt_embeds.shape)
|
231 |
-
pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0
|
|
|
232 |
|
233 |
options = {
|
234 |
#"prompt": prompt,
|
@@ -311,7 +312,8 @@ def generate_60(
|
|
311 |
# 4. (Optional) Average the pooled embeddings
|
312 |
prompt_embeds = torch.mean(prompt_embeds,dim=0,keepdim=True)
|
313 |
print('averaged shape: ', prompt_embeds.shape)
|
314 |
-
pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0
|
|
|
315 |
|
316 |
|
317 |
options = {
|
@@ -387,7 +389,7 @@ def generate_90(
|
|
387 |
prompt_embeds_b = pipe.text_encoder(text_input_ids2.to(torch.device('cuda')), output_hidden_states=True)
|
388 |
pooled_prompt_embeds_b = prompt_embeds_b[0] # Pooled output from encoder 2
|
389 |
prompt_embeds_b = prompt_embeds_b.hidden_states[-2] # Penultimate hidden state from encoder 2
|
390 |
-
|
391 |
# 3. Concatenate the embeddings
|
392 |
prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
393 |
print('catted shape: ', prompt_embeds.shape)
|
@@ -395,7 +397,8 @@ def generate_90(
|
|
395 |
# 4. (Optional) Average the pooled embeddings
|
396 |
prompt_embeds = torch.mean(prompt_embeds,dim=0,keepdim=True)
|
397 |
print('averaged shape: ', prompt_embeds.shape)
|
398 |
-
pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0
|
|
|
399 |
|
400 |
options = {
|
401 |
#"prompt": prompt,
|
|
|
228 |
# 4. (Optional) Average the pooled embeddings
|
229 |
prompt_embeds = torch.mean(prompt_embeds,dim=0,keepdim=True)
|
230 |
print('averaged shape: ', prompt_embeds.shape)
|
231 |
+
pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0)
|
232 |
+
print('pooled averaged shape: ', pooled_prompt_embeds.shape)
|
233 |
|
234 |
options = {
|
235 |
#"prompt": prompt,
|
|
|
312 |
# 4. (Optional) Average the pooled embeddings
|
313 |
prompt_embeds = torch.mean(prompt_embeds,dim=0,keepdim=True)
|
314 |
print('averaged shape: ', prompt_embeds.shape)
|
315 |
+
pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0)
|
316 |
+
print('pooled averaged shape: ', pooled_prompt_embeds.shape)
|
317 |
|
318 |
|
319 |
options = {
|
|
|
389 |
prompt_embeds_b = pipe.text_encoder(text_input_ids2.to(torch.device('cuda')), output_hidden_states=True)
|
390 |
pooled_prompt_embeds_b = prompt_embeds_b[0] # Pooled output from encoder 2
|
391 |
prompt_embeds_b = prompt_embeds_b.hidden_states[-2] # Penultimate hidden state from encoder 2
|
392 |
+
|
393 |
# 3. Concatenate the embeddings
|
394 |
prompt_embeds = torch.cat([prompt_embeds_a, prompt_embeds_b])
|
395 |
print('catted shape: ', prompt_embeds.shape)
|
|
|
397 |
# 4. (Optional) Average the pooled embeddings
|
398 |
prompt_embeds = torch.mean(prompt_embeds,dim=0,keepdim=True)
|
399 |
print('averaged shape: ', prompt_embeds.shape)
|
400 |
+
pooled_prompt_embeds = torch.mean(pooled_prompt_embeds,dim=0)
|
401 |
+
print('pooled averaged shape: ', pooled_prompt_embeds.shape)
|
402 |
|
403 |
options = {
|
404 |
#"prompt": prompt,
|