File size: 10,313 Bytes
0fef0a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
#4:
from fastapi import FastAPI, File, UploadFile, HTTPException
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
import numpy as np
import cv2
import base64
import logging
import os
from pathlib import Path
from face_recognition_system import FaceRecognitionSystem
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="Face Recognition API",
description="API for face detection and recognition using InsightFace",
version="1.0.0"
)
# Add CORS middleware for Hugging Face Spaces
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Create necessary directories
MODELS_DIR = Path("models")
KNOWN_FACES_DIR = Path("known_faces")
for directory in [MODELS_DIR, KNOWN_FACES_DIR]:
directory.mkdir(parents=True, exist_ok=True)
# Initialize face recognition system
try:
face_recog_system = FaceRecognitionSystem(
model_name="buffalo_l",
model_root=str(MODELS_DIR)
)
face_recog_system.process_known_faces(str(KNOWN_FACES_DIR))
logger.info("Face recognition system initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize face recognition system: {e}")
raise
@app.get("/")
async def root():
"""Health check endpoint"""
model_files = list(MODELS_DIR.glob("*"))
known_faces = list(KNOWN_FACES_DIR.glob("*"))
return {
"status": "ok",
"message": "Face Recognition API is running",
"model_directory": str(MODELS_DIR),
"known_faces_directory": str(KNOWN_FACES_DIR),
"model_files": [str(f.name) for f in model_files],
"known_faces": [str(f.name) for f in known_faces]
}
@app.post("/detect_faces")
async def detect_faces(file: UploadFile = File(...)):
"""
Endpoint to detect and identify faces in an uploaded image
"""
try:
# Validate file type
if not file.content_type.startswith('image/'):
raise HTTPException(status_code=400, detail="File must be an image")
# Read and decode image
image_data = await file.read()
nparr = np.frombuffer(image_data, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if img is None:
raise HTTPException(status_code=400, detail="Failed to decode image")
# Process image
detected_img = face_recog_system.detect_and_identify(img)
# Encode processed image to base64
success, buffer = cv2.imencode('.jpg', detected_img)
if not success:
raise HTTPException(status_code=500, detail="Failed to encode processed image")
processed_image_base64 = base64.b64encode(buffer).decode("utf-8")
# Prepare response
serializable_embeddings = {
name: embedding.tolist() if isinstance(embedding, np.ndarray) else embedding
for name, embedding in face_recog_system.known_face_embeddings.items()
}
return JSONResponse(content={
"status": "success",
"processed_image": processed_image_base64,
"faces": serializable_embeddings
})
except HTTPException as he:
raise he
except Exception as e:
logger.error(f"Error processing image: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Configuration for Hugging Face Spaces
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
#3:
# from fastapi import FastAPI, File, UploadFile, HTTPException
# from fastapi.responses import JSONResponse
# from fastapi.middleware.cors import CORSMiddleware
# import numpy as np
# import cv2
# import base64
# import logging
# from face_recognition_system import FaceRecognitionSystem
# # Set up logging
# logging.basicConfig(
# level=logging.INFO,
# format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
# )
# logger = logging.getLogger(__name__)
# # Initialize FastAPI app
# app = FastAPI(
# title="Face Recognition API",
# description="API for face detection and recognition using InsightFace",
# version="1.0.0"
# )
# # Add CORS middleware for Hugging Face Spaces
# app.add_middleware(
# CORSMiddleware,
# allow_origins=["*"],
# allow_credentials=True,
# allow_methods=["*"],
# allow_headers=["*"],
# )
# # Initialize face recognition system
# try:
# face_recog_system = FaceRecognitionSystem()
# # Update the path to match your Hugging Face Spaces directory structure
# face_recog_system.process_known_faces("known_faces")
# logger.info("Face recognition system initialized successfully")
# except Exception as e:
# logger.error(f"Failed to initialize face recognition system: {e}")
# raise
# @app.get("/")
# async def root():
# """Health check endpoint"""
# return {"status": "ok", "message": "Face Recognition API is running"}
# @app.post("/detect_faces")
# async def detect_faces(file: UploadFile = File(...)):
# """
# Endpoint to detect and identify faces in an uploaded image
# """
# try:
# # Validate file type
# if not file.content_type.startswith('image/'):
# raise HTTPException(status_code=400, detail="File must be an image")
# # Read and decode image
# image_data = await file.read()
# nparr = np.frombuffer(image_data, np.uint8)
# img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
# if img is None:
# raise HTTPException(status_code=400, detail="Failed to decode image")
# # Process image
# detected_img = face_recog_system.detect_and_identify(img)
# # Encode processed image to base64
# success, buffer = cv2.imencode('.jpg', detected_img)
# if not success:
# raise HTTPException(status_code=500, detail="Failed to encode processed image")
# processed_image_base64 = base64.b64encode(buffer).decode("utf-8")
# # Prepare response
# serializable_embeddings = {
# name: embedding.tolist() if isinstance(embedding, np.ndarray) else embedding
# for name, embedding in face_recog_system.known_face_embeddings.items()
# }
# return JSONResponse(content={
# "status": "success",
# "processed_image": processed_image_base64,
# "faces": serializable_embeddings
# })
# except HTTPException as he:
# raise he
# except Exception as e:
# logger.error(f"Error processing image: {e}")
# raise HTTPException(status_code=500, detail=str(e))
# # Configuration for Hugging Face Spaces
# if __name__ == "__main__":
# import uvicorn
# uvicorn.run(app, host="0.0.0.0", port=7860)
# initial:
# from fastapi import FastAPI
# app = FastAPI()
# @app.get("/")
# def home():
# '''Fuck Everyday Bitch'''
# return {"Everything's": "OK bTICH✅"}
# final:
# #2
# from fastapi import FastAPI, File, UploadFile
# from fastapi.responses import JSONResponse
# import numpy as np
# import cv2
# import base64
# import logging
# from face_recognition_system import FaceRecognitionSystem # import your class
# # Set up logging
# logging.basicConfig(level=logging.INFO)
# app = FastAPI()
# face_recog_system = FaceRecognitionSystem()
# # Load known faces
# try:
# face_recog_system.process_known_faces("./data/known/custom/")
# logging.info("Loaded known faces successfully.")
# except Exception as e:
# logging.error(f"Error loading known faces: {e}")
# @app.post("/detect_faces")
# async def detect_faces(file: UploadFile = File(...)):
# try:
# # Read and decode image from the uploaded file
# image_data = await file.read()
# nparr = np.frombuffer(image_data, np.uint8)
# img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
# # Check if image is loaded
# if img is None:
# logging.error("Failed to decode image. Ensure the uploaded file is a valid image.")
# return JSONResponse(content={"error": "Invalid image file"}, status_code=400)
# # Run detection and identification
# detected_img = face_recog_system.detect_and_identify(img)
# # Encode imNONOFage to base64
# success, buffer = cv2.imencode('.jpg', detected_img)
# if not success:
# logging.error("Image encoding failed.")
# return JSONResponse(content={"error": "Image encoding failed"}, status_code=500)
# processed_image_base64 = base64.b64encode(buffer).decode("utf-8")
# # Optional: Check if face embeddings were created
# if not face_recog_system.known_face_embeddings:
# logging.warning("No faces detected.")
# # NOTE:
# # Convert numpy arrays to lists for JSON serialization
# serializable_embeddings = {
# name: embedding.tolist() if isinstance(embedding, np.ndarray) else embedding
# for name, embedding in face_recog_system.known_face_embeddings.items()
# }
# return JSONResponse(content={
# "processed_image": processed_image_base64,
# "faces": serializable_embeddings
# })
# # return JSONResponse(content={"processed_image": processed_image_base64, "faces": face_recog_system.known_face_embeddings})
# except Exception as e:
# logging.error(f"Error processing image: {e}")
# return JSONResponse(content={"error": "An error occurred while processing the image"}, status_code=500)
# # main:
# # NOTE: ALWAYS FIRST CHECK IPv4-Address via: <ipconfig>
# # import uvicorn
# # if __name__ == "__main__":
# # uvicorn.run(app='app:app',
# # host='192.168.1.17', port=7860, reload=True)
|