work 0.1
Browse files- .gitignore +2 -0
- Dockerfile +16 -0
- Dockerfile.update +3 -0
- __pycache__/app.cpython-310.pyc +0 -0
- __pycache__/face_recognition_system.cpython-310.pyc +0 -0
- activate_env.bat +2 -0
- app.py +330 -0
- face_recognition_system.py +424 -0
- known_faces_embeddings.pkl +3 -0
- models/known_faces_embeddings.pkl +3 -0
- models/models/buffalo_l.zip +3 -0
- models/models/buffalo_l/1k3d68.onnx +3 -0
- models/models/buffalo_l/2d106det.onnx +3 -0
- models/models/buffalo_l/det_10g.onnx +3 -0
- models/models/buffalo_l/genderage.onnx +3 -0
- models/models/buffalo_l/w600k_r50.onnx +3 -0
- notes.ipynb +48 -0
- requirements.txt +10 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# Will later remove that commit
|
2 |
+
known_faces/
|
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
# Install g++
|
4 |
+
RUN apt-get update && apt-get install -y g++
|
5 |
+
|
6 |
+
WORKDIR /app
|
7 |
+
|
8 |
+
COPY ./ /app
|
9 |
+
|
10 |
+
# For GPU support:
|
11 |
+
RUN pip3 install --extra-index-url https://download.pytorch.org/whl/cu118 torch torchvision
|
12 |
+
|
13 |
+
RUN pip install -r requirements.txt
|
14 |
+
|
15 |
+
|
16 |
+
CMD fastapi run --reload --host=0.0.0.0 --port=7860
|
Dockerfile.update
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
FROM attend_b-hf
|
2 |
+
|
3 |
+
RUN pip install python-multipart opencv-python-headless pillow
|
__pycache__/app.cpython-310.pyc
ADDED
Binary file (3.39 kB). View file
|
|
__pycache__/face_recognition_system.cpython-310.pyc
ADDED
Binary file (4.29 kB). View file
|
|
activate_env.bat
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
@echo off
|
2 |
+
conda activate E:\INTERNSHIP\ongc\USING_DEEPLEARNING\table-transformer\env
|
app.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#4:
|
2 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
3 |
+
from fastapi.responses import JSONResponse
|
4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
import base64
|
8 |
+
import logging
|
9 |
+
import os
|
10 |
+
from pathlib import Path
|
11 |
+
from face_recognition_system import FaceRecognitionSystem
|
12 |
+
|
13 |
+
# Set up logging
|
14 |
+
logging.basicConfig(
|
15 |
+
level=logging.INFO,
|
16 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
17 |
+
)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
# Initialize FastAPI app
|
21 |
+
app = FastAPI(
|
22 |
+
title="Face Recognition API",
|
23 |
+
description="API for face detection and recognition using InsightFace",
|
24 |
+
version="1.0.0"
|
25 |
+
)
|
26 |
+
|
27 |
+
# Add CORS middleware for Hugging Face Spaces
|
28 |
+
app.add_middleware(
|
29 |
+
CORSMiddleware,
|
30 |
+
allow_origins=["*"],
|
31 |
+
allow_credentials=True,
|
32 |
+
allow_methods=["*"],
|
33 |
+
allow_headers=["*"],
|
34 |
+
)
|
35 |
+
|
36 |
+
# Create necessary directories
|
37 |
+
MODELS_DIR = Path("models")
|
38 |
+
KNOWN_FACES_DIR = Path("known_faces")
|
39 |
+
for directory in [MODELS_DIR, KNOWN_FACES_DIR]:
|
40 |
+
directory.mkdir(parents=True, exist_ok=True)
|
41 |
+
|
42 |
+
# Initialize face recognition system
|
43 |
+
try:
|
44 |
+
face_recog_system = FaceRecognitionSystem(
|
45 |
+
model_name="buffalo_l",
|
46 |
+
model_root=str(MODELS_DIR)
|
47 |
+
)
|
48 |
+
face_recog_system.process_known_faces(str(KNOWN_FACES_DIR))
|
49 |
+
logger.info("Face recognition system initialized successfully")
|
50 |
+
except Exception as e:
|
51 |
+
logger.error(f"Failed to initialize face recognition system: {e}")
|
52 |
+
raise
|
53 |
+
|
54 |
+
@app.get("/")
|
55 |
+
async def root():
|
56 |
+
"""Health check endpoint"""
|
57 |
+
model_files = list(MODELS_DIR.glob("*"))
|
58 |
+
known_faces = list(KNOWN_FACES_DIR.glob("*"))
|
59 |
+
return {
|
60 |
+
"status": "ok",
|
61 |
+
"message": "Face Recognition API is running",
|
62 |
+
"model_directory": str(MODELS_DIR),
|
63 |
+
"known_faces_directory": str(KNOWN_FACES_DIR),
|
64 |
+
"model_files": [str(f.name) for f in model_files],
|
65 |
+
"known_faces": [str(f.name) for f in known_faces]
|
66 |
+
}
|
67 |
+
|
68 |
+
@app.post("/detect_faces")
|
69 |
+
async def detect_faces(file: UploadFile = File(...)):
|
70 |
+
"""
|
71 |
+
Endpoint to detect and identify faces in an uploaded image
|
72 |
+
"""
|
73 |
+
try:
|
74 |
+
# Validate file type
|
75 |
+
if not file.content_type.startswith('image/'):
|
76 |
+
raise HTTPException(status_code=400, detail="File must be an image")
|
77 |
+
|
78 |
+
# Read and decode image
|
79 |
+
image_data = await file.read()
|
80 |
+
nparr = np.frombuffer(image_data, np.uint8)
|
81 |
+
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
82 |
+
|
83 |
+
if img is None:
|
84 |
+
raise HTTPException(status_code=400, detail="Failed to decode image")
|
85 |
+
|
86 |
+
# Process image
|
87 |
+
detected_img = face_recog_system.detect_and_identify(img)
|
88 |
+
|
89 |
+
# Encode processed image to base64
|
90 |
+
success, buffer = cv2.imencode('.jpg', detected_img)
|
91 |
+
if not success:
|
92 |
+
raise HTTPException(status_code=500, detail="Failed to encode processed image")
|
93 |
+
|
94 |
+
processed_image_base64 = base64.b64encode(buffer).decode("utf-8")
|
95 |
+
|
96 |
+
# Prepare response
|
97 |
+
serializable_embeddings = {
|
98 |
+
name: embedding.tolist() if isinstance(embedding, np.ndarray) else embedding
|
99 |
+
for name, embedding in face_recog_system.known_face_embeddings.items()
|
100 |
+
}
|
101 |
+
|
102 |
+
return JSONResponse(content={
|
103 |
+
"status": "success",
|
104 |
+
"processed_image": processed_image_base64,
|
105 |
+
"faces": serializable_embeddings
|
106 |
+
})
|
107 |
+
|
108 |
+
except HTTPException as he:
|
109 |
+
raise he
|
110 |
+
except Exception as e:
|
111 |
+
logger.error(f"Error processing image: {e}")
|
112 |
+
raise HTTPException(status_code=500, detail=str(e))
|
113 |
+
|
114 |
+
# Configuration for Hugging Face Spaces
|
115 |
+
if __name__ == "__main__":
|
116 |
+
import uvicorn
|
117 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
#3:
|
139 |
+
|
140 |
+
# from fastapi import FastAPI, File, UploadFile, HTTPException
|
141 |
+
# from fastapi.responses import JSONResponse
|
142 |
+
# from fastapi.middleware.cors import CORSMiddleware
|
143 |
+
# import numpy as np
|
144 |
+
# import cv2
|
145 |
+
# import base64
|
146 |
+
# import logging
|
147 |
+
# from face_recognition_system import FaceRecognitionSystem
|
148 |
+
|
149 |
+
# # Set up logging
|
150 |
+
# logging.basicConfig(
|
151 |
+
# level=logging.INFO,
|
152 |
+
# format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
153 |
+
# )
|
154 |
+
# logger = logging.getLogger(__name__)
|
155 |
+
|
156 |
+
# # Initialize FastAPI app
|
157 |
+
# app = FastAPI(
|
158 |
+
# title="Face Recognition API",
|
159 |
+
# description="API for face detection and recognition using InsightFace",
|
160 |
+
# version="1.0.0"
|
161 |
+
# )
|
162 |
+
|
163 |
+
# # Add CORS middleware for Hugging Face Spaces
|
164 |
+
# app.add_middleware(
|
165 |
+
# CORSMiddleware,
|
166 |
+
# allow_origins=["*"],
|
167 |
+
# allow_credentials=True,
|
168 |
+
# allow_methods=["*"],
|
169 |
+
# allow_headers=["*"],
|
170 |
+
# )
|
171 |
+
|
172 |
+
# # Initialize face recognition system
|
173 |
+
# try:
|
174 |
+
# face_recog_system = FaceRecognitionSystem()
|
175 |
+
# # Update the path to match your Hugging Face Spaces directory structure
|
176 |
+
# face_recog_system.process_known_faces("known_faces")
|
177 |
+
# logger.info("Face recognition system initialized successfully")
|
178 |
+
# except Exception as e:
|
179 |
+
# logger.error(f"Failed to initialize face recognition system: {e}")
|
180 |
+
# raise
|
181 |
+
|
182 |
+
# @app.get("/")
|
183 |
+
# async def root():
|
184 |
+
# """Health check endpoint"""
|
185 |
+
# return {"status": "ok", "message": "Face Recognition API is running"}
|
186 |
+
|
187 |
+
# @app.post("/detect_faces")
|
188 |
+
# async def detect_faces(file: UploadFile = File(...)):
|
189 |
+
# """
|
190 |
+
# Endpoint to detect and identify faces in an uploaded image
|
191 |
+
# """
|
192 |
+
# try:
|
193 |
+
# # Validate file type
|
194 |
+
# if not file.content_type.startswith('image/'):
|
195 |
+
# raise HTTPException(status_code=400, detail="File must be an image")
|
196 |
+
|
197 |
+
# # Read and decode image
|
198 |
+
# image_data = await file.read()
|
199 |
+
# nparr = np.frombuffer(image_data, np.uint8)
|
200 |
+
# img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
201 |
+
|
202 |
+
# if img is None:
|
203 |
+
# raise HTTPException(status_code=400, detail="Failed to decode image")
|
204 |
+
|
205 |
+
# # Process image
|
206 |
+
# detected_img = face_recog_system.detect_and_identify(img)
|
207 |
+
|
208 |
+
# # Encode processed image to base64
|
209 |
+
# success, buffer = cv2.imencode('.jpg', detected_img)
|
210 |
+
# if not success:
|
211 |
+
# raise HTTPException(status_code=500, detail="Failed to encode processed image")
|
212 |
+
|
213 |
+
# processed_image_base64 = base64.b64encode(buffer).decode("utf-8")
|
214 |
+
|
215 |
+
# # Prepare response
|
216 |
+
# serializable_embeddings = {
|
217 |
+
# name: embedding.tolist() if isinstance(embedding, np.ndarray) else embedding
|
218 |
+
# for name, embedding in face_recog_system.known_face_embeddings.items()
|
219 |
+
# }
|
220 |
+
|
221 |
+
# return JSONResponse(content={
|
222 |
+
# "status": "success",
|
223 |
+
# "processed_image": processed_image_base64,
|
224 |
+
# "faces": serializable_embeddings
|
225 |
+
# })
|
226 |
+
|
227 |
+
# except HTTPException as he:
|
228 |
+
# raise he
|
229 |
+
# except Exception as e:
|
230 |
+
# logger.error(f"Error processing image: {e}")
|
231 |
+
# raise HTTPException(status_code=500, detail=str(e))
|
232 |
+
|
233 |
+
# # Configuration for Hugging Face Spaces
|
234 |
+
# if __name__ == "__main__":
|
235 |
+
# import uvicorn
|
236 |
+
# uvicorn.run(app, host="0.0.0.0", port=7860)
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
|
242 |
+
# initial:
|
243 |
+
# from fastapi import FastAPI
|
244 |
+
|
245 |
+
# app = FastAPI()
|
246 |
+
|
247 |
+
# @app.get("/")
|
248 |
+
# def home():
|
249 |
+
# '''Fuck Everyday Bitch'''
|
250 |
+
# return {"Everything's": "OK bTICH✅"}
|
251 |
+
|
252 |
+
|
253 |
+
# final:
|
254 |
+
# #2
|
255 |
+
# from fastapi import FastAPI, File, UploadFile
|
256 |
+
# from fastapi.responses import JSONResponse
|
257 |
+
# import numpy as np
|
258 |
+
# import cv2
|
259 |
+
# import base64
|
260 |
+
# import logging
|
261 |
+
# from face_recognition_system import FaceRecognitionSystem # import your class
|
262 |
+
|
263 |
+
# # Set up logging
|
264 |
+
# logging.basicConfig(level=logging.INFO)
|
265 |
+
|
266 |
+
# app = FastAPI()
|
267 |
+
# face_recog_system = FaceRecognitionSystem()
|
268 |
+
|
269 |
+
# # Load known faces
|
270 |
+
# try:
|
271 |
+
# face_recog_system.process_known_faces("./data/known/custom/")
|
272 |
+
# logging.info("Loaded known faces successfully.")
|
273 |
+
# except Exception as e:
|
274 |
+
# logging.error(f"Error loading known faces: {e}")
|
275 |
+
|
276 |
+
# @app.post("/detect_faces")
|
277 |
+
# async def detect_faces(file: UploadFile = File(...)):
|
278 |
+
# try:
|
279 |
+
# # Read and decode image from the uploaded file
|
280 |
+
# image_data = await file.read()
|
281 |
+
# nparr = np.frombuffer(image_data, np.uint8)
|
282 |
+
# img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
283 |
+
|
284 |
+
# # Check if image is loaded
|
285 |
+
# if img is None:
|
286 |
+
# logging.error("Failed to decode image. Ensure the uploaded file is a valid image.")
|
287 |
+
# return JSONResponse(content={"error": "Invalid image file"}, status_code=400)
|
288 |
+
|
289 |
+
# # Run detection and identification
|
290 |
+
# detected_img = face_recog_system.detect_and_identify(img)
|
291 |
+
|
292 |
+
# # Encode imNONOFage to base64
|
293 |
+
# success, buffer = cv2.imencode('.jpg', detected_img)
|
294 |
+
# if not success:
|
295 |
+
# logging.error("Image encoding failed.")
|
296 |
+
# return JSONResponse(content={"error": "Image encoding failed"}, status_code=500)
|
297 |
+
|
298 |
+
# processed_image_base64 = base64.b64encode(buffer).decode("utf-8")
|
299 |
+
|
300 |
+
# # Optional: Check if face embeddings were created
|
301 |
+
# if not face_recog_system.known_face_embeddings:
|
302 |
+
# logging.warning("No faces detected.")
|
303 |
+
|
304 |
+
# # NOTE:
|
305 |
+
# # Convert numpy arrays to lists for JSON serialization
|
306 |
+
# serializable_embeddings = {
|
307 |
+
# name: embedding.tolist() if isinstance(embedding, np.ndarray) else embedding
|
308 |
+
# for name, embedding in face_recog_system.known_face_embeddings.items()
|
309 |
+
# }
|
310 |
+
# return JSONResponse(content={
|
311 |
+
# "processed_image": processed_image_base64,
|
312 |
+
# "faces": serializable_embeddings
|
313 |
+
# })
|
314 |
+
|
315 |
+
# # return JSONResponse(content={"processed_image": processed_image_base64, "faces": face_recog_system.known_face_embeddings})
|
316 |
+
|
317 |
+
# except Exception as e:
|
318 |
+
# logging.error(f"Error processing image: {e}")
|
319 |
+
# return JSONResponse(content={"error": "An error occurred while processing the image"}, status_code=500)
|
320 |
+
|
321 |
+
|
322 |
+
# # main:
|
323 |
+
# # NOTE: ALWAYS FIRST CHECK IPv4-Address via: <ipconfig>
|
324 |
+
# # import uvicorn
|
325 |
+
# # if __name__ == "__main__":
|
326 |
+
# # uvicorn.run(app='app:app',
|
327 |
+
# # host='192.168.1.17', port=7860, reload=True)
|
328 |
+
|
329 |
+
|
330 |
+
|
face_recognition_system.py
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 2:
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import insightface
|
5 |
+
from insightface.app import FaceAnalysis
|
6 |
+
from insightface.utils import download_onnx
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import Dict, List, Tuple
|
9 |
+
import pickle
|
10 |
+
import logging
|
11 |
+
import os
|
12 |
+
|
13 |
+
class FaceRecognitionSystem:
|
14 |
+
def __init__(self, model_name: str = "buffalo_l", model_root: str = "./models"):
|
15 |
+
# Set up logging
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
self.logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
# Create model directory if it doesn't exist
|
20 |
+
self.model_root = Path(model_root)
|
21 |
+
self.model_root.mkdir(parents=True, exist_ok=True)
|
22 |
+
|
23 |
+
# Set InsightFace model root
|
24 |
+
# insightface.utils.set_download_root(str(self.model_root))
|
25 |
+
# insightface.utils.download(root='./models_x', sub_dir='downloads', name='file')
|
26 |
+
|
27 |
+
# Initialize the face analysis model
|
28 |
+
try:
|
29 |
+
self.face_analyzer = FaceAnalysis(
|
30 |
+
name=model_name,
|
31 |
+
root=str(self.model_root),
|
32 |
+
download=True # Allow downloading if model doesn't exist
|
33 |
+
)
|
34 |
+
self.face_analyzer.prepare(ctx_id=-1, det_size=(640, 640)) # Using CPU
|
35 |
+
self.logger.info(f"Face analyzer initialized successfully in {self.model_root}")
|
36 |
+
except Exception as e:
|
37 |
+
self.logger.error(f"Error initializing face analyzer: {e}")
|
38 |
+
raise
|
39 |
+
|
40 |
+
# Dictionary to store known face embeddings
|
41 |
+
self.known_face_embeddings: Dict[str, np.ndarray] = {}
|
42 |
+
|
43 |
+
def process_known_faces(self, people_folder_path: str) -> None:
|
44 |
+
"""Process and store embeddings of known faces from a folder."""
|
45 |
+
embeddings_file = self.model_root / "known_faces_embeddings.pkl"
|
46 |
+
|
47 |
+
try:
|
48 |
+
# Load existing embeddings if available
|
49 |
+
if embeddings_file.exists():
|
50 |
+
with open(embeddings_file, 'rb') as f:
|
51 |
+
self.known_face_embeddings = pickle.load(f)
|
52 |
+
self.logger.info("Loaded existing face embeddings")
|
53 |
+
return
|
54 |
+
|
55 |
+
self.logger.info("Processing known faces...")
|
56 |
+
people_path = Path(people_folder_path)
|
57 |
+
if not people_path.exists():
|
58 |
+
self.logger.warning(f"Directory not found: {people_folder_path}")
|
59 |
+
return
|
60 |
+
|
61 |
+
for person_path in people_path.glob("*"):
|
62 |
+
if person_path.is_dir():
|
63 |
+
person_name = person_path.name
|
64 |
+
embeddings_list = []
|
65 |
+
|
66 |
+
for img_path in person_path.glob("*"):
|
67 |
+
if img_path.suffix.lower() in ['.jpg', '.jpeg', '.png']:
|
68 |
+
img = cv2.imread(str(img_path))
|
69 |
+
if img is None:
|
70 |
+
self.logger.warning(f"Could not read image: {img_path}")
|
71 |
+
continue
|
72 |
+
|
73 |
+
faces = self.face_analyzer.get(img)
|
74 |
+
if faces:
|
75 |
+
embeddings_list.append(faces[0].embedding)
|
76 |
+
else:
|
77 |
+
self.logger.warning(f"No face detected in {img_path}")
|
78 |
+
|
79 |
+
if embeddings_list:
|
80 |
+
self.known_face_embeddings[person_name] = np.mean(embeddings_list, axis=0)
|
81 |
+
self.logger.info(f"Processed {person_name}'s faces")
|
82 |
+
else:
|
83 |
+
self.logger.warning(f"No valid faces found for {person_name}")
|
84 |
+
|
85 |
+
# Save embeddings in model directory
|
86 |
+
with open(embeddings_file, 'wb') as f:
|
87 |
+
pickle.dump(self.known_face_embeddings, f)
|
88 |
+
self.logger.info(f"Face embeddings saved to {embeddings_file}")
|
89 |
+
|
90 |
+
except Exception as e:
|
91 |
+
self.logger.error(f"Error processing known faces: {e}")
|
92 |
+
raise
|
93 |
+
|
94 |
+
def identify_face(self, face_embedding: np.ndarray, threshold: float = 0.6) -> Tuple[str, float]:
|
95 |
+
"""Identify a face by comparing its embedding with known faces."""
|
96 |
+
try:
|
97 |
+
best_match = "Unknown"
|
98 |
+
best_score = float('inf')
|
99 |
+
|
100 |
+
for person_name, known_embedding in self.known_face_embeddings.items():
|
101 |
+
similarity = np.dot(face_embedding, known_embedding) / (
|
102 |
+
np.linalg.norm(face_embedding) * np.linalg.norm(known_embedding)
|
103 |
+
)
|
104 |
+
distance = 1 - similarity
|
105 |
+
|
106 |
+
if distance < best_score:
|
107 |
+
best_score = distance
|
108 |
+
best_match = person_name
|
109 |
+
|
110 |
+
return (best_match, best_score) if best_score < threshold else ("Unknown", best_score)
|
111 |
+
|
112 |
+
except Exception as e:
|
113 |
+
self.logger.error(f"Error in face identification: {e}")
|
114 |
+
return ("Error", 1.0)
|
115 |
+
|
116 |
+
def detect_and_identify(self, image_input) -> np.ndarray:
|
117 |
+
"""Detect and identify faces in an input image."""
|
118 |
+
try:
|
119 |
+
# Handle both string paths and numpy arrays
|
120 |
+
if isinstance(image_input, str):
|
121 |
+
img = cv2.imread(image_input)
|
122 |
+
else:
|
123 |
+
img = image_input
|
124 |
+
|
125 |
+
if img is None:
|
126 |
+
raise ValueError("Could not read input image")
|
127 |
+
|
128 |
+
faces = self.face_analyzer.get(img)
|
129 |
+
|
130 |
+
for face in faces:
|
131 |
+
bbox = face.bbox.astype(int)
|
132 |
+
embedding = face.embedding
|
133 |
+
name, score = self.identify_face(embedding)
|
134 |
+
|
135 |
+
cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)
|
136 |
+
label = f"{name} ({1-score:.2f})"
|
137 |
+
|
138 |
+
cv2.putText(img, label.upper(), (bbox[0], bbox[1]-10),
|
139 |
+
cv2.FONT_HERSHEY_PLAIN, 2.0, (0, 255, 0), 2)
|
140 |
+
|
141 |
+
return img
|
142 |
+
|
143 |
+
except Exception as e:
|
144 |
+
self.logger.error(f"Error in detection and identification: {e}")
|
145 |
+
raise
|
146 |
+
|
147 |
+
|
148 |
+
# 1:
|
149 |
+
# import cv2
|
150 |
+
# import numpy as np
|
151 |
+
# import insightface
|
152 |
+
# from insightface.app import FaceAnalysis
|
153 |
+
# from pathlib import Path
|
154 |
+
# from typing import Dict, List, Tuple
|
155 |
+
# import pickle
|
156 |
+
# import logging
|
157 |
+
|
158 |
+
# class FaceRecognitionSystem:
|
159 |
+
# def __init__(self, model_name: str = "buffalo_l"):
|
160 |
+
# # Set up logging
|
161 |
+
# logging.basicConfig(level=logging.INFO)
|
162 |
+
# self.logger = logging.getLogger(__name__)
|
163 |
+
|
164 |
+
# # Initialize the face analysis model
|
165 |
+
# try:
|
166 |
+
# self.face_analyzer = FaceAnalysis(name=model_name)
|
167 |
+
# self.face_analyzer.prepare(ctx_id=-1, det_size=(640, 640)) # Using CPU
|
168 |
+
# self.logger.info("Face analyzer initialized successfully")
|
169 |
+
# except Exception as e:
|
170 |
+
# self.logger.error(f"Error initializing face analyzer: {e}")
|
171 |
+
# raise
|
172 |
+
|
173 |
+
# # Dictionary to store known face embeddings
|
174 |
+
# self.known_face_embeddings: Dict[str, np.ndarray] = {}
|
175 |
+
|
176 |
+
# def process_known_faces(self, people_folder_path: str) -> None:
|
177 |
+
# """Process and store embeddings of known faces from a folder."""
|
178 |
+
# embeddings_file = Path("known_faces_embeddings.pkl")
|
179 |
+
|
180 |
+
# try:
|
181 |
+
# # Load existing embeddings if available
|
182 |
+
# if embeddings_file.exists():
|
183 |
+
# with open(embeddings_file, 'rb') as f:
|
184 |
+
# self.known_face_embeddings = pickle.load(f)
|
185 |
+
# self.logger.info("Loaded existing face embeddings")
|
186 |
+
# return
|
187 |
+
|
188 |
+
# self.logger.info("Processing known faces...")
|
189 |
+
# people_path = Path(people_folder_path)
|
190 |
+
# if not people_path.exists():
|
191 |
+
# self.logger.warning(f"Directory not found: {people_folder_path}")
|
192 |
+
# return
|
193 |
+
|
194 |
+
# for person_path in people_path.glob("*"):
|
195 |
+
# if person_path.is_dir():
|
196 |
+
# person_name = person_path.name
|
197 |
+
# embeddings_list = []
|
198 |
+
|
199 |
+
# for img_path in person_path.glob("*"):
|
200 |
+
# if img_path.suffix.lower() in ['.jpg', '.jpeg', '.png']:
|
201 |
+
# img = cv2.imread(str(img_path))
|
202 |
+
# if img is None:
|
203 |
+
# self.logger.warning(f"Could not read image: {img_path}")
|
204 |
+
# continue
|
205 |
+
|
206 |
+
# faces = self.face_analyzer.get(img)
|
207 |
+
# if faces:
|
208 |
+
# embeddings_list.append(faces[0].embedding)
|
209 |
+
# else:
|
210 |
+
# self.logger.warning(f"No face detected in {img_path}")
|
211 |
+
|
212 |
+
# if embeddings_list:
|
213 |
+
# self.known_face_embeddings[person_name] = np.mean(embeddings_list, axis=0)
|
214 |
+
# self.logger.info(f"Processed {person_name}'s faces")
|
215 |
+
# else:
|
216 |
+
# self.logger.warning(f"No valid faces found for {person_name}")
|
217 |
+
|
218 |
+
# # Save embeddings
|
219 |
+
# with open(embeddings_file, 'wb') as f:
|
220 |
+
# pickle.dump(self.known_face_embeddings, f)
|
221 |
+
# self.logger.info("Face processing complete")
|
222 |
+
|
223 |
+
# except Exception as e:
|
224 |
+
# self.logger.error(f"Error processing known faces: {e}")
|
225 |
+
# raise
|
226 |
+
|
227 |
+
# def identify_face(self, face_embedding: np.ndarray, threshold: float = 0.6) -> Tuple[str, float]:
|
228 |
+
# """Identify a face by comparing its embedding with known faces."""
|
229 |
+
# try:
|
230 |
+
# best_match = "Unknown"
|
231 |
+
# best_score = float('inf')
|
232 |
+
|
233 |
+
# for person_name, known_embedding in self.known_face_embeddings.items():
|
234 |
+
# similarity = np.dot(face_embedding, known_embedding) / (
|
235 |
+
# np.linalg.norm(face_embedding) * np.linalg.norm(known_embedding)
|
236 |
+
# )
|
237 |
+
# distance = 1 - similarity
|
238 |
+
|
239 |
+
# if distance < best_score:
|
240 |
+
# best_score = distance
|
241 |
+
# best_match = person_name
|
242 |
+
|
243 |
+
# return (best_match, best_score) if best_score < threshold else ("Unknown", best_score)
|
244 |
+
|
245 |
+
# except Exception as e:
|
246 |
+
# self.logger.error(f"Error in face identification: {e}")
|
247 |
+
# return ("Error", 1.0)
|
248 |
+
|
249 |
+
# def detect_and_identify(self, image_input) -> np.ndarray:
|
250 |
+
# """Detect and identify faces in an input image."""
|
251 |
+
# try:
|
252 |
+
# # Handle both string paths and numpy arrays
|
253 |
+
# if isinstance(image_input, str):
|
254 |
+
# img = cv2.imread(image_input)
|
255 |
+
# else:
|
256 |
+
# img = image_input
|
257 |
+
|
258 |
+
# if img is None:
|
259 |
+
# raise ValueError("Could not read input image")
|
260 |
+
|
261 |
+
# faces = self.face_analyzer.get(img)
|
262 |
+
|
263 |
+
# for face in faces:
|
264 |
+
# bbox = face.bbox.astype(int)
|
265 |
+
# embedding = face.embedding
|
266 |
+
# name, score = self.identify_face(embedding)
|
267 |
+
|
268 |
+
# cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)
|
269 |
+
# label = f"{name} ({1-score:.2f})"
|
270 |
+
|
271 |
+
# cv2.putText(img, label.upper(), (bbox[0], bbox[1]-10),
|
272 |
+
# cv2.FONT_HERSHEY_PLAIN, 2.0, (0, 255, 0), 2)
|
273 |
+
|
274 |
+
# return img
|
275 |
+
|
276 |
+
# except Exception as e:
|
277 |
+
# self.logger.error(f"Error in detection and identification: {e}")
|
278 |
+
# raise
|
279 |
+
|
280 |
+
|
281 |
+
|
282 |
+
# OLD:
|
283 |
+
# import cv2
|
284 |
+
# import numpy as np
|
285 |
+
# import insightface
|
286 |
+
# from insightface.app import FaceAnalysis
|
287 |
+
# from insightface.data import get_image as ins_get_image
|
288 |
+
# import os
|
289 |
+
# from pathlib import Path
|
290 |
+
# from typing import Dict, List, Tuple
|
291 |
+
# import pickle
|
292 |
+
|
293 |
+
# class FaceRecognitionSystem:
|
294 |
+
# def __init__(self, model_name: str = "buffalo_l"):
|
295 |
+
# # Initialize the face analysis model
|
296 |
+
# self.face_analyzer = FaceAnalysis(name=model_name)
|
297 |
+
# self.face_analyzer.prepare(ctx_id=0, det_size=(640, 640))
|
298 |
+
|
299 |
+
# # Dictionary to store known face embeddings
|
300 |
+
# self.known_face_embeddings: Dict[str, np.ndarray] = {}
|
301 |
+
|
302 |
+
# def process_known_faces(self, people_folder_path: str) -> None:
|
303 |
+
# """Process and store embeddings of known faces from a folder."""
|
304 |
+
# # Create embeddings file path
|
305 |
+
# # embeddings_file = Path("known_face_embeddings copy2.pkl")
|
306 |
+
# embeddings_file = Path("data/model/known_faces_embeddings.pkl")
|
307 |
+
|
308 |
+
# # Load existing embeddings if available
|
309 |
+
# if embeddings_file.exists():
|
310 |
+
# with open(embeddings_file, 'rb') as f:
|
311 |
+
# self.known_face_embeddings = pickle.load(f)
|
312 |
+
# print("Loaded existing face embeddings.")
|
313 |
+
# return
|
314 |
+
|
315 |
+
# print("Processing known faces...")
|
316 |
+
# for person_path in Path(people_folder_path).glob("*"):
|
317 |
+
# if person_path.is_dir():
|
318 |
+
# person_name = person_path.name
|
319 |
+
# embeddings_list = []
|
320 |
+
|
321 |
+
# # Process each image in person's folder
|
322 |
+
# for img_path in person_path.glob("*"):
|
323 |
+
# if img_path.suffix.lower() in ['.jpg', '.jpeg', '.png']:
|
324 |
+
# img = cv2.imread(str(img_path))
|
325 |
+
# if img is None:
|
326 |
+
# continue
|
327 |
+
|
328 |
+
# # Get face embedding
|
329 |
+
# faces = self.face_analyzer.get(img)
|
330 |
+
# if faces:
|
331 |
+
# embeddings_list.append(faces[0].embedding)
|
332 |
+
|
333 |
+
# if embeddings_list:
|
334 |
+
# # Average all embeddings for this person
|
335 |
+
# self.known_face_embeddings[person_name] = np.mean(embeddings_list, axis=0)
|
336 |
+
# print(f"Processed {person_name}'s faces")
|
337 |
+
|
338 |
+
# # Save embeddings for future use
|
339 |
+
# with open(embeddings_file, 'wb') as f:
|
340 |
+
# pickle.dump(self.known_face_embeddings, f)
|
341 |
+
# print("Face processing complete.")
|
342 |
+
|
343 |
+
# # OLD:
|
344 |
+
# def identify_face(self, face_embedding: np.ndarray, threshold: float = 0.6) -> Tuple[str, float]:
|
345 |
+
# """Identify a face by comparing its embedding with known faces."""
|
346 |
+
# best_match = "Unknown"
|
347 |
+
# best_score = float('inf')
|
348 |
+
|
349 |
+
# for person_name, known_embedding in self.known_face_embeddings.items():
|
350 |
+
# # Calculate cosine similarity
|
351 |
+
# similarity = np.dot(face_embedding, known_embedding) / (
|
352 |
+
# np.linalg.norm(face_embedding) * np.linalg.norm(known_embedding)
|
353 |
+
# )
|
354 |
+
# distance = 1 - similarity
|
355 |
+
|
356 |
+
# if distance < best_score:
|
357 |
+
# best_score = distance
|
358 |
+
# best_match = person_name
|
359 |
+
|
360 |
+
# return (best_match, best_score) if best_score < threshold else ("Unknown", best_score)
|
361 |
+
|
362 |
+
|
363 |
+
|
364 |
+
# def detect_and_identify(self, image_input, output_path: str = None) -> np.ndarray:
|
365 |
+
# """Detect and identify faces in an input image."""
|
366 |
+
# # Handle both string paths and numpy arrays
|
367 |
+
# if isinstance(image_input, str):
|
368 |
+
# img = cv2.imread(image_input)
|
369 |
+
# else:
|
370 |
+
# img = image_input
|
371 |
+
|
372 |
+
# if img is None:
|
373 |
+
# raise ValueError("Could not read input image")
|
374 |
+
|
375 |
+
# # Rest of the code remains the same
|
376 |
+
# faces = self.face_analyzer.get(img)
|
377 |
+
|
378 |
+
# for face in faces:
|
379 |
+
# bbox = face.bbox.astype(int)
|
380 |
+
# embedding = face.embedding
|
381 |
+
# name, score = self.identify_face(embedding)
|
382 |
+
|
383 |
+
# cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)
|
384 |
+
# label = f"{name} ({1-score:.2f})"
|
385 |
+
|
386 |
+
# cv2.putText(img, label.upper(), (bbox[0], bbox[1]-10),
|
387 |
+
# cv2.FONT_HERSHEY_PLAIN, 4.2, (0, 255, 0), 2)
|
388 |
+
# # cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2)
|
389 |
+
|
390 |
+
# if output_path:
|
391 |
+
# cv2.imwrite(output_path, img)
|
392 |
+
|
393 |
+
# return img
|
394 |
+
|
395 |
+
|
396 |
+
# # def detect_and_identify(self, image_path: str, output_path: str = None) -> np.ndarray:
|
397 |
+
# # """Detect and identify faces in an input image."""
|
398 |
+
# # # Read input image
|
399 |
+
# # img = cv2.imread(image_path)
|
400 |
+
# # if img is None:
|
401 |
+
# # raise ValueError("Could not read input image")
|
402 |
+
|
403 |
+
# # # Detect faces
|
404 |
+
# # faces = self.face_analyzer.get(img)
|
405 |
+
|
406 |
+
# # # Draw results on image
|
407 |
+
# # for face in faces:
|
408 |
+
# # bbox = face.bbox.astype(int)
|
409 |
+
# # embedding = face.embedding
|
410 |
+
# # name, score = self.identify_face(embedding)
|
411 |
+
|
412 |
+
# # # Draw rectangle around face
|
413 |
+
# # cv2.rectangle(img, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)
|
414 |
+
|
415 |
+
# # # Add name and confidence score
|
416 |
+
# # label = f"{name} ({1-score:.2f})"
|
417 |
+
# # cv2.putText(img, label, (bbox[0], bbox[1]-10),
|
418 |
+
# # cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0), 2)
|
419 |
+
|
420 |
+
# # # Save output image if path provided
|
421 |
+
# # if output_path:
|
422 |
+
# # cv2.imwrite(output_path, img)
|
423 |
+
|
424 |
+
# # return img
|
known_faces_embeddings.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0839cd316f561634361c53ce48b8240d822cec7ec7ba3f567c5e10471fdcf342
|
3 |
+
size 10573
|
models/known_faces_embeddings.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0839cd316f561634361c53ce48b8240d822cec7ec7ba3f567c5e10471fdcf342
|
3 |
+
size 10573
|
models/models/buffalo_l.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80ffe37d8a5940d59a7384c201a2a38d4741f2f3c51eef46ebb28218a7b0ca2f
|
3 |
+
size 288621354
|
models/models/buffalo_l/1k3d68.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df5c06b8a0c12e422b2ed8947b8869faa4105387f199c477af038aa01f9a45cc
|
3 |
+
size 143607619
|
models/models/buffalo_l/2d106det.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f001b856447c413801ef5c42091ed0cd516fcd21f2d6b79635b1e733a7109dbf
|
3 |
+
size 5030888
|
models/models/buffalo_l/det_10g.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5838f7fe053675b1c7a08b633df49e7af5495cee0493c7dcf6697200b85b5b91
|
3 |
+
size 16923827
|
models/models/buffalo_l/genderage.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fde69b1c810857b88c64a335084f1c3fe8f01246c9a191b48c7bb756d6652fb
|
3 |
+
size 1322532
|
models/models/buffalo_l/w600k_r50.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c06341c33c2ca1f86781dab0e829f88ad5b64be9fba56e56bc9ebdefc619e43
|
3 |
+
size 174383860
|
notes.ipynb
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# **Docker NOTES 📝🖌️**\n",
|
8 |
+
"\n",
|
9 |
+
"1. **Create `Dockerfile`**\n",
|
10 |
+
"2. **`docker buildx build -t attendify_fastapi_backend-hf .`**\n",
|
11 |
+
"3. **`docker run -v E:\\MULTIFACE_RECOGNITION_CLASSROOM\\Backend\\ATTENDIFY_BACKEND:/app --name attendify_fastapi_backend_container -p 7860:7860 attendify_fastapi_backend-hf`**"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "markdown",
|
16 |
+
"metadata": {},
|
17 |
+
"source": [
|
18 |
+
"* **Updating Docker Image without rebuilding again and only including the necessary packages:**\n",
|
19 |
+
" \n",
|
20 |
+
" **`Dockerfile.update`**: \n",
|
21 |
+
"\n",
|
22 |
+
" `FROM attend_b-hf`\n",
|
23 |
+
" \n",
|
24 |
+
" `RUN pip install <new_package_1> <new_package_2>`\n",
|
25 |
+
"\n",
|
26 |
+
" Then run:\n",
|
27 |
+
"\n",
|
28 |
+
" `docker build -t attend_b-hf-update -f Dockerfile.update .`"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "markdown",
|
33 |
+
"metadata": {},
|
34 |
+
"source": [
|
35 |
+
"# **FastAPI NOTES**\n",
|
36 |
+
"\n",
|
37 |
+
"1. **Learning about: Middlewares & CORS(`Cross Origin Resource Sharing`)**"
|
38 |
+
]
|
39 |
+
}
|
40 |
+
],
|
41 |
+
"metadata": {
|
42 |
+
"language_info": {
|
43 |
+
"name": "python"
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"nbformat": 4,
|
47 |
+
"nbformat_minor": 2
|
48 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi[all]
|
2 |
+
# Installed Torch & Torchvision: Via Dockerfile
|
3 |
+
# torch
|
4 |
+
# torchvision
|
5 |
+
onnxruntime
|
6 |
+
insightface
|
7 |
+
|
8 |
+
python-multipart
|
9 |
+
opencv-python-headless
|
10 |
+
pillow
|