Text Generation
Spanish
conversational
YAML Metadata Warning: The pipeline tag "conversational" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, text2text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, any-to-any, other
SAlsapaca logo

SalpiBloomZ-1b7: Spanish + BloomZ + Alpaca + softskills + virtual agents (WIP)

Adapter Description

This adapter was created with the PEFT library and allowed the base model bigscience/bloomz-1b7 to be fine-tuned on the hackathon-somos-nlp-2023/Habilidades_Agente_v1 by using the method LoRA.

How to use

py import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer

peft_model_id = "hackathon-somos-nlp-2023/salsapaca-native" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained(peft_model_id)

Load the Lora model

model = PeftModel.from_pretrained(model, peft_model_id)

def gen_conversation(text): text = "instruction: " + text + "\n " batch = tokenizer(text, return_tensors='pt') with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=256, eos_token_id=50258, early_stopping = True, temperature=.9)

print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=False))

text = "hola"

gen_conversation(text)

Resources used

Google Colab machine with the following specifications

Resource logo

Citation

@misc {hackathon-somos-nlp-2023, author = { {Edison Bejarano, Leonardo Bolaños, Alberto Ceballos, Santiago Pineda, Nicolay Potes} }, title = { SAlsapaca }, year = 2023, url = { https://huggingface.co/hackathon-somos-nlp-2023/salsapaca-native } publisher = { Hugging Face } }

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train somosnlp-hackathon-2023/SalpiBloomZ_15949_input_1024-1b7