|
--- |
|
library_name: sklearn |
|
license: mit |
|
tags: |
|
- sklearn |
|
- skops |
|
- tabular-classification |
|
model_format: skops |
|
model_file: febskxmodel_hug_1.skops |
|
widget: |
|
- structuredData: |
|
backlog_minutes: |
|
- 246897 |
|
- 265856 |
|
- 622046 |
|
backlog_num_jobs: |
|
- 211 |
|
- 298 |
|
- 369 |
|
max_minutes: |
|
- 360 |
|
- 30 |
|
- 2160 |
|
nnodes: |
|
- 1 |
|
- 1 |
|
- 1 |
|
running_minutes: |
|
- 1934324 |
|
- 1934324 |
|
- 1934214 |
|
running_num_jobs: |
|
- 6830 |
|
- 6830 |
|
- 6829 |
|
--- |
|
|
|
# Model description |
|
|
|
[More Information Needed] |
|
|
|
## Intended uses & limitations |
|
|
|
[More Information Needed] |
|
|
|
## Training Procedure |
|
|
|
[More Information Needed] |
|
|
|
### Hyperparameters |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
| Hyperparameter | Value | |
|
|----------------------------|----------------------------------------------------------------------------------------------------| |
|
| memory | | |
|
| steps | [('scale', StandardScaler()), ('hgbc', HistGradientBoostingClassifier(max_depth=9, max_iter=600))] | |
|
| verbose | False | |
|
| scale | StandardScaler() | |
|
| hgbc | HistGradientBoostingClassifier(max_depth=9, max_iter=600) | |
|
| scale__copy | True | |
|
| scale__with_mean | True | |
|
| scale__with_std | True | |
|
| hgbc__categorical_features | | |
|
| hgbc__class_weight | | |
|
| hgbc__early_stopping | auto | |
|
| hgbc__interaction_cst | | |
|
| hgbc__l2_regularization | 0.0 | |
|
| hgbc__learning_rate | 0.1 | |
|
| hgbc__loss | log_loss | |
|
| hgbc__max_bins | 255 | |
|
| hgbc__max_depth | 9 | |
|
| hgbc__max_iter | 600 | |
|
| hgbc__max_leaf_nodes | 31 | |
|
| hgbc__min_samples_leaf | 20 | |
|
| hgbc__monotonic_cst | | |
|
| hgbc__n_iter_no_change | 10 | |
|
| hgbc__random_state | | |
|
| hgbc__scoring | loss | |
|
| hgbc__tol | 1e-07 | |
|
| hgbc__validation_fraction | 0.1 | |
|
| hgbc__verbose | 0 | |
|
| hgbc__warm_start | False | |
|
|
|
</details> |
|
|
|
### Model Plot |
|
|
|
<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('scale', StandardScaler()),('hgbc',HistGradientBoostingClassifier(max_depth=9, max_iter=600))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('scale', StandardScaler()),('hgbc',HistGradientBoostingClassifier(max_depth=9, max_iter=600))])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label sk-toggleable__label-arrow">HistGradientBoostingClassifier</label><div class="sk-toggleable__content"><pre>HistGradientBoostingClassifier(max_depth=9, max_iter=600)</pre></div></div></div></div></div></div></div> |
|
|
|
## Evaluation Results |
|
|
|
| Metric | Value | |
|
|-----------------------|--------------------| |
|
| accuracy | 0.9079252003561887 | |
|
| classification report | precision recall f1-score support<br /><br /> 0 0.94 0.98 0.96 3580<br /> 1 0.76 0.55 0.64 415<br /> 2 0.63 0.51 0.56 208<br /> 3 0.68 0.47 0.55 160<br /> 4 0.91 0.94 0.93 1252<br /><br /> accuracy 0.91 5615<br /> macro avg 0.78 0.69 0.73 5615<br />weighted avg 0.90 0.91 0.90 5615 | |
|
|
|
# How to Get Started with the Model |
|
|
|
[More Information Needed] |
|
|
|
# Model Card Authors |
|
|
|
This model card is written by following authors: |
|
|
|
[More Information Needed] |
|
|
|
# Model Card Contact |
|
|
|
You can contact the model card authors through following channels: |
|
[More Information Needed] |
|
|
|
# Citation |
|
|
|
Below you can find information related to citation. |
|
|
|
**BibTeX:** |
|
``` |
|
[More Information Needed] |
|
``` |
|
|
|
# citation_bibtex |
|
|
|
bibtex |
|
@inproceedings{...,year={2024}} |
|
|
|
# get_started_code |
|
|
|
import skops.io as sio |
|
model = sio.load(file, trusted=unknown_types) |
|
|
|
# model_card_authors |
|
|
|
Smruti Padhy |
|
|
|
# limitations |
|
|
|
This model is ready to be used in production. |
|
|
|
# model_description |
|
|
|
This is a Histogram-based Gradient Boosting Classification Tree model trained on HPC history jobs between 1Feb-1Aug 2022, window number1 |
|
|
|
# eval_method |
|
|
|
The model is evaluated using test split, on accuracy and F1 score with macro average. |
|
|
|
# confusion_matrix |
|
|
|
 |
|
|