metadata
base_model: unsloth/Llama-3.2-3B-Instruct
tags:
- text-generation
- mongodb
- query-generation
- transformers
- unsloth
- llama
- trl
- gguf
- quantized
license: apache-2.0
language:
- en
datasets:
- skshmjn/mongo_prompt_query
pipeline_tag: text-generation
library_name: transformers
MongoDB Query Generator - Llama-3.2-3B (Fine-tuned)
- Developed by: skshmjn
- License: apache-2.0
- Finetuned from model: unsloth/Llama-3.2-3B-Instruct
- Dataset Used: skshmjn/mongodb-chat-query
- Supports: Transformers & GGUF (for fast inference on CPU/GPU)
π Model Overview
This model is designed to generate MongoDB queries from natural language prompts. It supports:
- Basic CRUD operations:
find
,insert
,update
,delete
- Aggregation Pipelines:
$group
,$match
,$lookup
,$sort
, etc. - Indexing & Performance Queries
- Nested Queries & Joins (
$lookup
)
Trained using Unsloth for efficient fine-tuning and GGUF quantization for fast inference.
π Example Usage (Transformers)
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "skshmjn/Llama-3.2-3B-Mongo-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
schema = {} # Pass your mongodb schema here, leave empty for generic queries. Sample available in hugging face's repository
prompt = "Here is mongodb schema {schema} and Find all employees older than 30 in the 'employees' collection."
inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(**inputs, max_length=100)
query = tokenizer.decode(output[0], skip_special_tokens=True)
print(query)